DOI QR코드

DOI QR Code

Anti-inflammatory effects of ethanol extract from Orostachys japonicus on modulation of signal pathways in LPS-stimulated RAW 264.7 cells

  • Jeong, Jae-Han (Department of Biomedical Laboratory Science, Inje University) ;
  • Ryu, Deok-Seon (Department of Smart Foods and Drugs, Inje University) ;
  • Suk, Dong-Hee (Department of Biomedical Laboratory Science, Inje University) ;
  • Lee, Dong-Seok (Department of Smart Foods and Drugs, Inje University)
  • 투고 : 2011.03.29
  • 심사 : 2011.04.13
  • 발행 : 2011.06.30

초록

In this study, powder of Orostachys japonicus A. Berger (O. japonicus) was extracted with 95% ethyl alcohol and fractionated using a series of organic solvents, including n-hexane (hexane), dichloromethane (DCM), ethylacetate (EtOAc), n-butanol (BuOH), and water ($H_2O$). We investigated the anti-inflammatory effects of these O. japonicus extracts on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Their effects on the expression of inflammatory mediators and transcription factors were analyzed by Western blotting. DCM fraction significantly inhibited formation of reactive oxygen species (ROS) as well as nitric oxide (NO) in LPS-stimulated RAW 264.7 cells. Phosphorylation of the pro-inflammatory transcription factor complex nuclear factor-kappa B (NF-${\kappa}$B) p65 and expression of inducible nitric oxide synthase (iNOS), one of its downstream proteins, were also suppressed by DCM fraction. These effects were regulated by upsteam proteins in the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathways. Taken together, our data suggest that O. japonicus could be used as a potential source for anti-inflammatory agents.

키워드

참고문헌

  1. Choi, S. Y., Chung, M. J., Seo, W. D., Shin, J. H., Shon, M. Y. and Sung, N. J. (2006) Inhibitory effects of Orostachys japonicus extracts on the formation of N-nitrosodimethylamine. J. Agric. Food Chem. 54, 6075-6078. https://doi.org/10.1021/jf060845f
  2. Park, H. J., Young, H. S., Park, K. Y., Rhee, S. H., Chung, H. Y. and Choi, J. S. (1991) Flavonoids from the whole plants of Orostachys japonicus. Arch. Pharm. Res. 14, 167- 71. https://doi.org/10.1007/BF02892023
  3. Ma, C. J., Jung, W. J., Lee, K. Y., Kim, Y. C. and Sung, S. H. (2009) Calpain inhibitory flavonoids isolated from Orostachys japonicus. J. Enzyme Inhib. Med. Chem. 24, 676-679. https://doi.org/10.1080/14756360802328075
  4. Jung, H. J., Choi, J., Nam, J. H. and Park, H. J. (2007) Anti-ulcerogenic effects of the flavonoid-rich fraction from the extract of Orostachys japonicus in mice. J. Med. Food. 10, 702-706. https://doi.org/10.1089/jmf.2006.223
  5. Kim, H. J., Lee, J. Y., Kim, S. M., Park, D. A., Jin, C., Hong, S. P. and Lee, Y. S. (2009) A new epicatechin gallate and calpain inhibitory activity from Orostachys japonicus. Fitoterapia. 80, 73-76. https://doi.org/10.1016/j.fitote.2008.10.003
  6. Lee, J. H., Lee, S. J., Park, S., Kim, H. K., Jeong, W. Y., Choi, J. Y., Sung, N. J., Lee, W. S., Lim, C. S., Kim, G. S. and Shin, S. C. (2011) Characterisation of flavonoids in Orostachys japonicus A. Berger using HPLC-MS/MS: Contribution to the overall antioxidant effect. Food Chem. 124, 1627-1633. https://doi.org/10.1016/j.foodchem.2010.08.031
  7. Yoon, Y., Kim, K. S., Hong, S. G., Kang, B. J., Lee, M. Y. and Cho, D. W. (2000) Protective effects of Orostachys japonicus A. Berger (Crassuloceae) on $H_2O_2-induced$ apoptosis in GT1-1 mouse hypothalamic neuronal cell line. J. Ethnopharmacol. 69, 73-78. https://doi.org/10.1016/S0378-8741(99)00107-5
  8. Yoon, N. Y., Min, B. S., Lee, H. K., Park, J. C. and Choi, J. S. (2005) A potent anti-complementary acylated sterol glucoside from Orostachys japonicus. Arch. Pharm. Res. 28, 892-896. https://doi.org/10.1007/BF02973873
  9. Hancock, J. T. (1997) Superoxide, hydrogen peroxide and nitric oxide as signalling molecules: their production and role in disease. Br. J. Biomed. Sci. 54, 38-46.
  10. Huerre, M. R. and Gounon. P. (1996) Inflammation: patterns and new concepts. Res. Immunol. 147, 417-434. https://doi.org/10.1016/S0923-2494(97)84407-0
  11. Islam, M. S., Yoshida, H., Matsuki, N., Ono, K., Nagasaka, R., Ushio, H., Guo, Y., Hiramatsu, T., Hosoya, T., Murata, T., Hori, M. and Ozaki, H. (2009) Antioxidant, free radical-scavenging, and NF-kappaB-inhibitory activities of phytosteryl ferulates: structure-activity studies. J. Pharmacol. Sci. 111, 328-337. https://doi.org/10.1254/jphs.09146FP
  12. Guzik, T. J., Korbut, R. and Adamek-Guzik, T. (2003) Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54, 469-487.
  13. Nathan, C. (2002) Points of control in inflammation. Nature 420, 846-852. https://doi.org/10.1038/nature01320
  14. Rankin, J. A. (2004) Biological mediators of acute inflammation. AACN Clin. Issues. 15, 3-17. https://doi.org/10.1097/00044067-200401000-00002
  15. Cobb, M. H. and Goldsmith, E. J. (1995) How MAP kinases are regulated. J. Biol. Chem. 270, 14843-14846. https://doi.org/10.1074/jbc.270.25.14843
  16. Han, J., Lee, J. D., Bibbs, L. and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808-811. https://doi.org/10.1126/science.7914033
  17. Jeong, W. S., Kim, I. W., Hu, R. and Kong, A. N. (2004) Modulatory properties of various natural chemopreventive agents on the activation of NF-kappaB signaling pathway. Pharm. Res. 21, 661-670. https://doi.org/10.1023/B:PHAM.0000022413.43212.cf
  18. Xie, Q. W., Kashiwabara, Y. and Nathan, C. (1994) Role of transcription factor NF-kappaB/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269, 4705-4708.
  19. Park, S. Y., Park, G. Y., Ko, W. S. and Kim, Y. (2009) Dichroa febrifuga Lour. inhibits the production of IL-1beta and IL-6 through blocking NF-kappaB, MAPK and Akt activation in macrophages. J. Ethnopharmacol. 125, 246-251. https://doi.org/10.1016/j.jep.2009.07.003
  20. Aggarwal, B. B. and Natarajan, K. (1996) Tumor necrosis factors: developments during the last decade. Eur. Cytokine. Netw. 7, 93-124.
  21. Cho, W., Nam, J. W., Kang, H. J., Windono, T., Seo, E. K. and Lee, K. T. (2009) Zedoarondiol isolated from the rhizoma of Curcuma heyneana is involved in the inhibition of iNOS, COX-2 and pro-inflammatory cytokines via the downregulation of NF-kappaB pathway in LPS-stimulated murine macrophages. Int. Immunopharmacol. 9, 1049-1057. https://doi.org/10.1016/j.intimp.2009.04.012
  22. Doyle, S. L. and O'Neill, L. A. (2006) Toll-like receptors: from the discovery of NFkappa B to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 72, 1102-1113. https://doi.org/10.1016/j.bcp.2006.07.010
  23. Feldmann, M., Brennan, F. M., Chantry, D., Haworth, C., Turner, M., Katsikis, P., Londei, M., Abney, E., Buchan, G. and Barrett, K. (1991) Cytokine assays: role in evaluation of the pathogenesis of autoimmunity. Immunol. Rev. 119, 105-123. https://doi.org/10.1111/j.1600-065X.1991.tb00580.x
  24. Ha, H. H., Park, S. Y., Ko, W. S. and Kim, Y. (2008) Gleditsia sinensis thorns inhibit the production of NO through NF-kappaB supression in LPS-stimulated macrophages. J. Ethnopharmacol. 118, 429-434. https://doi.org/10.1016/j.jep.2008.05.004
  25. Wang, C., Deng, L., Hong, M., Akkaraju, G. R., Inoue, J. and Chen, Z. J. (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351. https://doi.org/10.1038/35085597
  26. Minagar, A., Shapshak, P., Fujimura, R., Ownby, R., Heyes, M. and Eisdorfer, C. (2002) The role of macrophage/ microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J. Neurol. Sci. 202, 13-23. https://doi.org/10.1016/S0022-510X(02)00207-1
  27. Guha, M. and Mackman, N. (2001) LPS induction of gene expression in human monocytes. Cell Signal. 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  28. Kim, J. H., Jeong, J. H., Jeon, S. T., Kim, H., Ock, J., Suk, K., Kim, S. I., Song, K. S. and Lee, W. H. (2006) Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-kappaB activation in macrophages. Mol. Pharmacol. 69, 1783-1790. https://doi.org/10.1124/mol.105.021048
  29. Lin, Y. L. and Lin, J. K. (1997) (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol. Pharmacol. 52, 465-472.
  30. Rafi, M. M. and Shafaie, Y. (2007) Dietary lutein modulates inducible nitric oxide synthase (iNOS) gene and protein expression in mouse macrophage cells (RAW 264.7). Mol. Nutr. Food Res. 51, 333-340. https://doi.org/10.1002/mnfr.200600170
  31. Tak, P. P. and Firestein, G. S. (2001) NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7-11. https://doi.org/10.1172/JCI11830
  32. Vane, J. R., Mitchell, J. A., Appleton, I., Tomlinson, A., Bishop-Bailey, D., Croxtall, J. and Willoughby, D. A. (1994) Inducible isoforms of cyclo-oxygenase and nitric-oxide synthase in inflammation. Proc. Natl. Acad. Sci. U.S.A. 91, 2046-2050. https://doi.org/10.1073/pnas.91.6.2046
  33. Nakagawa, T. and Yokozawa, T. (2002) Direct scavenging of nitric oxide and superoxide by green tea. Food Chem. Toxicol. 40, 1745-1750. https://doi.org/10.1016/S0278-6915(02)00169-2
  34. Hultqvist, M., Olsson, L. M., Gelderman, K. A. and Holmdahl, R. (2009) The protective role of ROS in autoimmune disease. Trends Immunol. 30, 201-208. https://doi.org/10.1016/j.it.2009.03.004
  35. Hancock, J. T., Desikan, R. and Neill, S. J. (2001) Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 29, 345-350. https://doi.org/10.1042/BST0290345
  36. Nhiem, N. X., Tai, B. H., Quang, T. H., Kiem, P. H., Minh, C. V., Nam, N. H., Kim, J. H., Im, L. R., Lee, Y. M. and Kim, Y. H. (2011) A new ursane-type triterpenoid glycoside from Centella asiatica leaves modulates the production of nitric oxide and secretion of $TNF-{\alpha}$ in activated RAW 264.7 cells. Bioorg. Med. Chem. Lett. 21, 1777- 1781. https://doi.org/10.1016/j.bmcl.2011.01.066
  37. Oh, J. H., Lee, Y. J., Park, J. W. and Kwon, T. K. (2008) Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-kappaB in RAW 264.7 cells. Eur. J. Pharmacol. 599, 11-17. https://doi.org/10.1016/j.ejphar.2008.09.017
  38. Malyshev, I. Y. and Shnyra, A. (2003) Controlled modulation of inflammatory, stress and apoptotic responses in macrophages. Curr. Drug Targets Immune Endocr. Metabol. Disord. 3, 1-22.

피인용 문헌

  1. Anti-cancer activity of the ethylacetate fraction from Orostachys japonicus for modulation of the signaling pathway in HepG2 human hepatoma cells vol.23, pp.1, 2014, https://doi.org/10.1007/s10068-014-0037-0
  2. Anti-inflammatory and Anti-melanogenic Effects of an Extract of Orostachys japonicus A. Berger vol.12, pp.2, 2016, https://doi.org/10.15810/jic.2016.12.2.002
  3. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1 vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.120
  4. Hexane extracts of garlic cloves induce apoptosis through the generation of reactive oxygen species in Hep3B human hepatocarcinoma cells vol.28, pp.5, 2012, https://doi.org/10.3892/or.2012.1985
  5. Inhibition of collagenase and melanogenesis by ethanol extracts of Orostachys japonicus A. Berger: possible involvement of Erk and Akt signaling pathways in melanoma cells 2017, https://doi.org/10.1093/abbs/gmx090
  6. Decitabine, a DNA methyltransferase inhibitor, induces apoptosis in human leukemia cells through intracellular reactive oxygen species generation vol.41, pp.3, 2012, https://doi.org/10.3892/ijo.2012.1546
  7. Oleanolic acid regulates NF-κB signaling by suppressing MafK expression in RAW 264.7 cells vol.47, pp.9, 2014, https://doi.org/10.5483/BMBRep.2014.47.9.149
  8. Panax Notoginseng flower saponins (PNFS) inhibit LPS-stimulated NO overproduction and iNOS gene overexpression via the suppression of TLR4-mediated MAPK/NF-kappa B signaling pathways in RAW264.7 macrophages vol.10, pp.1, 2015, https://doi.org/10.1186/s13020-015-0045-x
  9. Acute oral toxicity of the ethyl acetate fraction ofOrostachys japonicusin mice vol.52, pp.10, 2014, https://doi.org/10.3109/13880209.2014.892142
  10. Anti-inflammatory effects and corresponding mechanisms of cirsimaritin extracted from Cirsium japonicum var. maackii Maxim vol.27, pp.14, 2017, https://doi.org/10.1016/j.bmcl.2017.05.051
  11. Orostachys japonicus Suppresses Osteoclast Differentiation by Inhibiting NFATc1 Expression vol.43, pp.05, 2015, https://doi.org/10.1142/S0192415X15500585
  12. Anti-oxidizing effect of the dichloromethane and hexane fractions from Orostachys japonicus in LPS-stimulated RAW 264.7 cells via upregulation of Nrf2 expression and activation of MAPK signaling pathway vol.47, pp.2, 2014, https://doi.org/10.5483/BMBRep.2014.47.2.088
  13. Orostachys japonicusInhibits Expression of the TLR4, NOD2, iNOS, and COX-2 Genes in LPS-Stimulated Human PMA-Differentiated THP-1 Cells by Inhibiting NF-κB and MAPK Activation vol.2015, 2015, https://doi.org/10.1155/2015/682019
  14. Orostachys japonicus induces apoptosis and cell cycle arrest through the mitochondria-dependent apoptotic pathway in AGS human gastric cancer cells vol.45, pp.1, 2014, https://doi.org/10.3892/ijo.2014.2404
  15. Artemisia asiaticaNakai Attenuates the Expression of Proinflammatory Mediators in Stimulated Macrophages Through Modulation of Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways vol.18, pp.8, 2015, https://doi.org/10.1089/jmf.2014.3344
  16. Flavonoids Identified from KoreanScutellaria baicalensisGeorgi Inhibit Inflammatory Signaling by Suppressing Activation of NF-κB and MAPK in RAW 264.7 Cells vol.2013, 2013, https://doi.org/10.1155/2013/912031
  17. Aqueous extract of Orostachys japonicus A. Berger exerts immunostimulatory activity in RAW 264.7 macrophages vol.170, 2015, https://doi.org/10.1016/j.jep.2015.04.012
  18. Inhibitory effects of Orostachys malacophyllus var. iwarenge extracts on reactive oxygen species production and lipid accumulation during 3T3-L1 adipocyte differentiation pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0426-x