DOI QR코드

DOI QR Code

Multi-coated YBa2Cu3O7-x Films Fabricated by a Fluorine-Free Sol-Gel Process

  • Cho, E.A. (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Jang, G.E. (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Hyun, O.B. (Transmission and Distribution Lab., Korea Electric Power Research Institute)
  • Received : 2011.04.25
  • Accepted : 2011.06.12
  • Published : 2011.06.30

Abstract

[ $YBa_2C_3O_{7-x}$ ]films were fabricated on a $SrTiO_3$ (100) substrate using a trimethylaceate propionic acid (TMAP)-based MOD process by controlling the precursor solution viscosity, firing temperature, and by using various coatings. The viscosity of the precursor solution was controlled by the addition of Xylenes. The films were heat treated with different temperatures from 750 to $800^{\circ}C$. c-axis oriented films were obtained. After adding 9 ml of Xylene into the precursor solution, the $T_c$ of the YBCO film, which was coated 2 times and heat treated at $800^{\circ}C$, was 86 K and the measured $J_c$ was above 2.5 MA/$cm^2$ at 77 K in a zero-field.

Keywords

References

  1. Y. Shiohara and Y. Aoki, Physica C 426-431, 1 (2005). https://doi.org/10.1016/j.physc.2005.02.138
  2. P. C. McIntyre and M. J. Cima, J. Mater. Res. 9, 2778 (1994). https://doi.org/10.1557/JMR.1994.2778
  3. P. C. McIntyre, M. J. Cima, and M. F. Ng, J. Appl. Phys. 682, 4183 (1990).
  4. T. Manabe, M. Sohma, I. Ymaguchi, W. Kondo, K. Tsukada, S. Mizuta, and T. Kumagai, Physica C 412-414, 896 (2004). https://doi.org/10.1016/j.physc.2004.01.110
  5. N. J. Lee, T. Doi, Y. Hakuraku, N. Kashima, and S. Nagaya, Physica C 412-414, 900 (2004). https://doi.org/10.1016/j.physc.2004.01.116
  6. J. Lian, H. Yao, D. Shi, L. Wang, Y. Xu, Q. Liu, and Z. Han, Supercond. Sci. Technol. 16, 838 (2003). https://doi.org/10.1088/0953-2048/16/8/302
  7. Y. Xu, A. Goyal, J. Lian, N. A. Rutter, D. Shi, S. Sathyamurthy, M. Paranthanman, L. Wang, P. M. Martin, and D. M. Kroeger, J. Am. Ceram. Soc. 87, 1669 (2008).
  8. Y. Xu, A. Goyal, K. J. Leonard, and E. D. Specht, J. Am. Ceram. Soc. 89, 914 (2006). https://doi.org/10.1111/j.1551-2916.2005.00821.x
  9. Y. Chen, F. Yan, G. Zhao, G. Qu, and L. Lei, J. Alloy. Compd. 505, 640 (2010). https://doi.org/10.1016/j.jallcom.2010.06.098
  10. Y. Xu, A. Goyal, N. A. Rutter, D. Shi, M. Parathaman, S. Sathyamurthy, P. M. Martin, and D. M. Kroeger, J. Mater. Res. 18, 667 (2003).
  11. Y. Xu, A. Goyal, K. Leonard, and P. Martin, Physica C 421, 67 (2005). https://doi.org/10.1016/j.physc.2005.03.001
  12. T. Araki, T. Yuasa, H. Kurosaki, Y. Yamada, I. Hirabayashi, T. Kato, T. Hirayama, Y. Iijima, and T. Saito, Supercond. Sci. Technol. 15, L1 (2002). https://doi.org/10.1088/0953-2048/15/1/101
  13. T. Izumi, M. Yoshizumi, J. Matsuda, K. Nakaoka, Y. Kitoh, Y. Sutoh, T. Nakanishi, A. Nakai, K. Suzuki, Y. Yamada, A. Yajima, T. Saitoh, and Y. Shiohara, Physica C 510, 463 (2007).
  14. D. Shi, Y. Xu, H. Yao, J. Lian, L. Wang, A. Li, and S. X. Li, Supercond. Sci. Technol. 17, 1420 (2004). https://doi.org/10.1088/0953-2048/17/12/011
  15. F. Lu and E. E. Hellstrom, 5MI03 Poster presented at Applied Superconductivity Conference, Seattle (2006).
  16. Y. Xu, D. Shi, A. Goyal, N. A. Rutter, M. Paranthaman, P. M. Martin, and D. M. Kroeger, Ceramic Transition 140, 129 (2003).
  17. P. Y. Chu and R. C. Buchanan, J. Mater. Res. 9, 844 (1994). https://doi.org/10.1557/JMR.1994.0844
  18. O. Castano, A. Cavallaro, A. Palau, J. C. Gonzalez, M. Rosell, T. Puig, S. Pinol, N. Mestres, F. Sandiumenge, A. Pomar, and X. Obradors, IEEE Trans. Appl. Supercond. 13, 2504 (2003). https://doi.org/10.1109/TASC.2003.811832
  19. G. M. Shin, K. P. Ko, K. J. Song, S. H. Moon, and S. I. Yoo, Physica C 468, 1567 (2008). https://doi.org/10.1016/j.physc.2008.05.068
  20. Y. Xu, A. Goyal, K. Leonard, L. Heatherly, and P. Martin, IEEE Trans. Appl. Supercond. 15, 2617 (2005). https://doi.org/10.1109/TASC.2005.847682