DOI QR코드

DOI QR Code

Electric Field-Induced Modification of Magnetocrystalline Anisotropy in Transition-metal Films and at Metal-Insulator Interfaces

  • Nakamura, K. (Department of Physics Engineering, Mie University) ;
  • Akiyama, T. (Department of Physics Engineering, Mie University) ;
  • Ito, T. (Department of Physics Engineering, Mie University) ;
  • Weinert, M. (Department of Physics, University of Wisconsin-Milwaukee) ;
  • Freeman, A.J. (Department of Physics and Astronomy, Northwestern University)
  • Received : 2011.02.20
  • Accepted : 2011.04.19
  • Published : 2011.06.30

Abstract

We report results of first principles calculations for effects of an external electric field (E-field) on the magnetocrystalline anisotropy (MCA) in transition-metal (Fe, Co, and Ni) monolayers and at metal-insulator (Fe/MgO) interfaces by means of full-potential linearized augmented plane wave method. For the monolayers, the MCA in the Fe monolayer (but not in the Co and Ni) is modified by the E-field, and a giant modification is achieved in the $Fe_{0.75}Co_{0.25}$. For the Fe/MgO interfaces, the ideal Fe/MgO interface gives rise to a large out-of plane MCA, and a MCA modification is induced when an E-field is introduced. However, the existence of an interfacial FeO layer between the Fe layer and the MgO substrate may play a key role in demonstrating an Efield-driven MCA switching, i.e., from out-of-plane MCA to in-plane MCA.

Keywords

References

  1. S. D. Bader, Rev. Mod. Phys. 78, 1 (2006) https://doi.org/10.1103/RevModPhys.78.1
  2. S. D. Bader and S. S. P. Parkin, Annu. Rev. Condens. Matter Phys. 1, 71 (2010) https://doi.org/10.1146/annurev-conmatphys-070909-104123
  3. M. Weisheit, S. Fahler, A. Marty, Y. Souche, C. Poinshignon, and D. Givord, Science 315, 349 (2007). https://doi.org/10.1126/science.1136629
  4. T. Maruyama, K. Ohta, T. Nozaki, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nature Nanotech. 4, 158 (2009). https://doi.org/10.1038/nnano.2008.406
  5. Y. Shiota, T Maruyama, T. Nozaki, T. Shinjyo, M. Shiraishi, and Y. Suzuki, Appl. Phys. Express 2, 063001 (2009). https://doi.org/10.1143/APEX.2.063001
  6. C.-G. Duan, J. P. Velev, R. F. Sabirianov, Z. Zhu, J. Chu, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 101, 137201 (2008). https://doi.org/10.1103/PhysRevLett.101.137201
  7. K. Nakamura, R. Shimabukuro, Y. Fujiwara, T. Akiyama, T. Ito, and A. J. Freeman, Phys. Rev. Lett. 102, 187201 (2009). https://doi.org/10.1103/PhysRevLett.102.187201
  8. M. Tsujikawa and T. Oda, Phys. Rev. Lett. 102, 247203 (2009). https://doi.org/10.1103/PhysRevLett.102.247203
  9. K. Nakamura, R. Shimabukuro, T. Akiyama, T. Ito, and A. J. Freeman, Phys. Rev. B 80, 172402 (2009). https://doi.org/10.1103/PhysRevB.80.172402
  10. K. Nakamura, T. Akiyama, T. Ito, M. Weinert, and A. J. Freeman, Phys. Rev. B 81, 220409R (2010). https://doi.org/10.1103/PhysRevB.81.220409
  11. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev B 24, 864 (1981). https://doi.org/10.1103/PhysRevB.24.864
  12. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B. 26, 4571 (1982). https://doi.org/10.1103/PhysRevB.26.4571
  13. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972). https://doi.org/10.1088/0022-3719/5/13/012
  14. M. Weinert, G. Schneider, R. Podloucky, and J. Redinger, J. Phys.: Condens. Matter 21, 084201 (2009). https://doi.org/10.1088/0953-8984/21/8/084201
  15. M. Weinert, R. E. Watson, and J. W. Davenport, Phys. Rev. B 32, 2115 (1985). https://doi.org/10.1103/PhysRevB.32.2115
  16. G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 41, 11919 (1990). https://doi.org/10.1103/PhysRevB.41.11919
  17. D. S. Wang, R. Wu, and A. J. Freeman, Phys. Rev. B 47, 14932 (1993). https://doi.org/10.1103/PhysRevB.47.14932
  18. C. Li and A. J. Freeman, Phys. Rev. B 43, 780 (1991). https://doi.org/10.1103/PhysRevB.43.780
  19. T. Urano and T. Kanaji, J. Phys. Soc. Jpn. 57, 3403 (1988). https://doi.org/10.1143/JPSJ.57.3403
  20. H. L. Meyerheim, R. Popescu, N. Jedrecy, M. Vedpathak, M. Sauvage-Simkin, R. Pinchaux, B. Heinrich, and J. Kirschner, Phys. Rev. B 65, 144433 (2002). https://doi.org/10.1103/PhysRevB.65.144433

Cited by

  1. Enhancement of perpendicular magnetic anisotropy and its electric field-induced change through interface engineering in Cr/Fe/MgO vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05994-7
  2. Effect of metal-to-metal interface states on the electric-field modified magnetic anisotropy in MgO/Fe/non-magnetic metal vol.119, pp.13, 2016, https://doi.org/10.1063/1.4945025