DOI QR코드

DOI QR Code

Negative Dynamic Resistance and RF Amplification in Magnetic Tunnel Junctions

  • Received : 2011.01.20
  • Accepted : 2011.04.24
  • Published : 2011.06.30

Abstract

We report on a numerical calculation study of two new functional properties in magnetic tunnel junctions (MTJs), negative dynamic resistance and RF amplification. The magnetic dynamics in a conventional CoFeB/MgO/CoFeB MTJ with in-plane magnetization was investigated using a macro-spin model simulation. To examine the influence of thermal fluctuations, random external magnetic fields were also included. Using a voltage controlled bias circuit, the negative dynamic resistance was obtained from time averaged I-V characteristics at both 0 K and 300 K under appropriate external magnetic fields and bias voltages. Using this negative dynamic resistance property, we demonstrated RF amplification with a 100 MHz high frequency signal. Sizable RF amplification gain was observed without thermal fluctuation. However, at 300 K, the RF signal was not amplified because low frequency magnetization dynamics were dominant.

Keywords

References

  1. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995). https://doi.org/10.1016/0304-8853(95)90001-2
  2. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995). https://doi.org/10.1103/PhysRevLett.74.3273
  3. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004). https://doi.org/10.1038/nmat1257
  4. S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H.Yang, Nat. Mater. 3, 862 (2004). https://doi.org/10.1038/nmat1256
  5. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996). https://doi.org/10.1016/0304-8853(96)00062-5
  6. L. Berger, Phys. Rev. B 54, 9353 (1996). https://doi.org/10.1103/PhysRevB.54.9353
  7. J. A. Katine, F. J. Albert, R. A. Buhrman E. B. Myers, and D. C. Ralph, Phys. Rev. Lett. 84, 3149 (2000). https://doi.org/10.1103/PhysRevLett.84.3149
  8. H. Kubota, A. Fukushima, Y. Ootani, S. Yuasa, K. Ando, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki, Jpn. J. Appl. Phys. 44, L1237 (2005). https://doi.org/10.1143/JJAP.44.L1237
  9. H. Tomita, K. Konishi, T. Nozaki, H. Kubota, A. Fukushima, K. Yakushiji, S. Yuasa, Y. Nakatani, T. Shinjo, M. Shiraishi, and Y. Suzuki, Appl. Phys. Express 1, 061303 (2008). https://doi.org/10.1143/APEX.1.061303
  10. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science 285, 867 (1999). https://doi.org/10.1126/science.285.5429.867
  11. S. I. Klselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature 425, 380 (2003). https://doi.org/10.1038/nature01967
  12. A. M. Deac, A. Fukushima, H. Kubota, H. Maehara, Y. Suzuki, S. Yuasa, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, and N. Watanabe, Nature Phys. 4, 803 (2008). https://doi.org/10.1038/nphys1036
  13. A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and S. Yuasa, Nature 438, 339 (2005). https://doi.org/10.1038/nature04207
  14. J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, and D. C. Ralph, Nature Phys. 4, 67 (2008). https://doi.org/10.1038/nphys783
  15. H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki, Nature Phys. 4, 37 (2008). https://doi.org/10.1038/nphys784
  16. S. Ishibashi, T. Seki, T. Nozaki, H. Kubota, S. Yakata, A. Fukushima, S. Yuasa, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, and Y. Suzuki, Appl. Phys. Express 3, 073001 (2010). https://doi.org/10.1143/APEX.3.073001
  17. J. C. Slonczewski, Phys. Rev. B 71, 024411 (2005). https://doi.org/10.1103/PhysRevB.71.024411
  18. W. F. Brown, Jr. Phys Rev. 130 1677 (1963). https://doi.org/10.1103/PhysRev.130.1677
  19. H. Akimoto, H. Kanai, Y. Uehara, T. Ishizuka, and S. Kameyama, J. Appl. Phys. 97, 10N705 (2005). https://doi.org/10.1063/1.1851881

Cited by

  1. Microwave amplification in a magnetic tunnel junction induced by heat-to-spin conversion at the nanoscale pp.1748-3395, 2018, https://doi.org/10.1038/s41565-018-0306-9