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Efficient Use of On-chip Memory through 

Profile-Driven Array Reorganization

Doosan Cho, Jonghee Youn*

Abstract : In high performance embedded systems, the use of multiple on-chip memories is an 

essential architectural feature for exploiting inherent parallelism in multimedia applications. This 

feature allows multiple data accesses to be executed in parallel. However, it remains difficult to 

effectively exploit of multiple on-chip memories. The successful use of this architecture strongly 

depends on how to efficiently detect and exploit memory parallelism in target applications. In this 

paper, we propose a technique based on a linear array access descriptor [1], which is generated 

from profiled data, to detect and exploit memory parallelism. The proposed technique tackles an 

array reorganization problem to maximize memory parallelism in multimedia applications. We 

present preliminary experiments applying the proposed technique onto a representative coarse 

grained reconfigurable array processor (CGRA) with multimedia kernel codes. Our experimental 

results demonstrate that our technique optimizes data placement by putting independent data on 

separate storage. The results exhibit 9.8% higher performance on average compared to the 

existing method.

Keywords : Compiler, Memory Hierarchy, Execution time, Data Placement

Ⅰ. Introduction

 As embedded systems grow more complex 

and large to satisfy diverse demands from the 

market, the processor-memory speed gap is 

becoming a critical design issue. Since the 

increase in memory access speed has not kept 

up with increases in processor speed, memory 

access contention has increased, resulting in a 

longer memory access latency in systems 

today. This makes the memory access cost 

much greater than the computation cost. Thus, 

improvement in memory performance is critical 
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to the successful use of embedded systems.

To improve the overall performance, many 

DSPs employ Harvard architecture, which 

provides simultaneous accesses to separate 

on-chip memory modules for instructions and 

data [2, 3]. Some DSP processors are further 

equipped with multiple data-memory banks that 

are accessible in parallel, such as Motorola 

56000 [2] and Gepard Core DSPs [3, 4]. Since 

data can be partitioned and allocated to 

separate data-memory banks and can be 

accessed simultaneously, the multiple 

data-memory bank architecture offers 

potentially higher memory bandwidth and, thus, 

improves the system performance. This 

architectural feature is very attractive for 

high-performance DSP applications. In fact, 

many DSP routines, such as finite impulse 

response (FIR) filters, require the convolution 

of multiple data arrays as a kernel operation. 

Processors with multiple memory banks can 
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Fig. 1. Gray boxes represent the array elements accessed and arrows with black heads and white 

heads keep track of the access driven by indices   and   (or  ), respectively. The base indicates 

the offset of the first accesses from the beginning of the array.

achieve higher memory bandwidth for this kind 

of application. However, many existing high  

level language compilers cannot exploit the 

advantage of multiple data-memory banks 

effectively. 

 As an example in Figure 1, the accessed 

region of array a by the references a[  × 

8+] and a[  +8×   +l] is not overlapped. 

Concurrent accesses of the references is 

desirable. However, a traditional naive 

approach places the array into a single 

memory, resulting into serialization of the 

references. Theoretically, it would seem that 

assigning a separate memory to each 

independently accessed region of the array 

would optimize the performance, but in 

practice, data dependences limit the amount of 

parallelism, resulting in no significant 

performance gain from an arbitrarily large 

number of memories. 

In Figure 1, the non-affine subscripts often 

prevent to analyze the dependence relation 

with affine references. It is hard to detect 

parallelism of array references with such 

complex references through traditional 

approaches. To overcome this difficulty, we 

propose a technique to parallelize affine array 

accesses considering dependence relation with 

non-affine references. For simplicity of 

presentation, none of the algorithms are 

designed to directly handle non-affine 

subscript expressions. The candidates of our 

approach is the arrays with affine subscript 

expressions. It is important consideration since 

most audio and video processing and 

multimedia program consists of affine and 

non-affine references. 

Specifically, we present an algorithm that 

performs an array reorganization for exploiting 

multiple memories driven by profile 

information, so that the array is mapped to 

memory according to access patterns in the 

code. We also describe how to reorganize the 

array in memory from the standard layout in a 

single memory to the optimized layout in 

multiple on-chip memories. We present a 

comprehensive set of performance results, 

derived automatically by our compiler for 

several multimedia kernels. 

The organization of the paper is the 

following. The next section describes an 

architecture model which motivates the 

proposed approach. Section 3 presents the 

overview of the array reorganization algorithm. 

Section 4 describes the analyses and 

transformations to identify the parallel memory 

accesses. Section 5 describes how to map 

array partitions to a limited number of physical 

memories. Section 6 describes how we 

re­organize array data from/to a naive layout 

in a single memory to/from a reorganized 

layout in multiple memories. Section 7 

presents a set of experimental results derived 

automatically by our compiler. We survey 
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Fig. 2. Workflow of the proposed approach

related work in Section 8. In Section 9 we 

present conclusions.

Ⅱ. Background on CGRAs

The main components of CGRA include the 

PE (Processing Element) array and the local 

memory. The PE array is a 2D array of 

possibly heterogeneous PEs connected with a 

mesh interconnect, though the exact topology 

and the interconnects are architecture 

dependent. 

The local memory of a CGRA is typically a 

high speed, high bandwidth, highly predictable 

random access memory that provides 

temporary storage space for array data, which 

are often input/output of loops that are 

mapped to CGRAs. To provide high bandwidth, 

local memories are often organized in multiple 

banks. For instance the MorphoSys 

architecture [5] has 16 banks, every two of 

which may be accessed exclusively by each 

row of PEs (there are eight rows in total).

In our architecture model, it has a 

fundamental restriction that a bank cannot be 

accessed by more than two different PEs at 

the same time, if the bank consists of two 

port cells. (In the rest of the paper we 

assume that a bank consist of two read port 

and single write port cells, and thus has three 

ports.)

If more than two PEs try to access the 

same bank at the same time, a bank conflict 

occurs. CGRA's communication architecture 

must detect such a bank conflict and resolve it 

by generating 

a stall. Hardware stall ensures that all the 

requests from different PEs are serviced 

sequentially, but is very expensive because 

most of the PEs will be idle during stall 

cycles. This can be solved by a compiler 

approach, where compiler makes sure that this 

does not happen. This paper develops such 

technique and show that it is promising.

Ⅲ. Overall Workflow

In order to efficiently solve the array 

partitioning and mapping problem, we 

formulate them into two problems as itself. 

The first problem is to partition arrays within 

in­dependently accessed elements. The goal of 

the first problem is to improve memory 

parallelism. The second problem is to find an 

optimal layout of partitioned arrays in the 

multiple memory modules to maximize parallel 

array accesses. 

In the preparation of our approach, it is 

performed to normalize a loop iteration step 

size, which involves replacing all the instances 

of the loop index variable i with s × i, where 

s is the step size of loop l. Loop normalization 

is always legal. 

The workflow of our approach is shown in 

Figure 2. The first step is to gather array 

access footprint through profiling. In profiling 

task, we have several times run our 
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benchmark code with various types of input 

set to gather array access footprints. The 

profiling information includes several data such 

as data type, data location, accessed time 

stamp. By using profiling information, linear 

array access descriptors are created to 

summary all array accesses. And then, array 

reference partitioning and memory mapping are 

performed by using the array access 

descriptors. In array partitioning step, we 

divide a set of array references into partitions 

that are accessed orthogonal region of the 

whole array, and map each partition to a 

separate memory. Assuming arrays accessed 

within their bounds, if two array references 

access mutually exclusive array indices in at 

least one dimension, they access independent 

array elements. In this case, we put them in 

separate partitions. Otherwise, we put them in 

the same partition, and derive a single unified 

data layout for them based on their common 

data access patterns. To maximize the 

opportunities of parallel memory accesses, we 

create as many partitions as possible. 

In the next step, array mapping is 

performed to determine placement of 

partitioned arrays in multiple memory modules. 

Using a formal metric that considers profit to 

parallelize array accesses and overhead to 

transfer replicated array partitions, candidates 

of array partitions to be copied to the best 

placement are determined for a loop. In this 

step, physical mapping, the compiler binds 

each array partition to physical memory, taking 

into account memory access conflicts based on 

the array access order in the program, to 

exploit both memory access and instruction 

level parallelism. 

After that, the compiler rewrites each array 

reference so that the transformed subscript 

expression takes into account the position 

within the newly formed array in the mapped 

memory. Based on the data access patterns of 

the code, we insert array distribution/gathering 

code to/from multiple memories. Finally, 

optimized code with the array partitions are 

generated. The following subsections describe 

this workflow in detail.

Ⅳ. The Proposed Approach: Array 

Partitioning

1. Summarizing Data Access Patterns

Prior techniques for array access analysis 

sometimes fail because they are unable to 

recognize some hidden simple access regions 

shown in Figure 1. To overcome this 

limitation, we use a linear array access 

descriptor, which is developed from [1], 

generated from memory access footprints. It is 

designed to represent the access pattern 

precisely and enable analysis techniques to 

expose the simplicity of array access patterns, 

thus improving the memory parallelism. 

A linear array access descriptor is 

described by the triple start +[stride, span]. 

The start is the offset, from the first element 

of the array, for the first location accessed. A 

dimension is a movement through memory with 

a consistent stride and a computable number 

of steps. The stride gives the distance 

between two consecutive array accesses in 

one dimension. The span is the distance (in 

memory units) between the offsets of the first 

and last elements that are accessed in one 

dimension.

For example, an access footprint of 0,8,16, 

..., 80 will be described by a linear array 

access descriptor as 0+[8,80]. If the array is 

accessed in a two level nested loop, which the 

outer loop has step 1 and span 5, the 

descriptor might be a multi-dimension pattern 

like 0+[1,5][8,80]. This has several attractive 

properties. It is simple and fast, and it works 

quite well if data accesses have predominantly 

linear patterns. We notice that, in practice, a 

significant portion of instructions do exhibit 

linear access behavior and hence can be 

captured by a small number of descriptors. We 

use the descriptor to describe both array 

partitioning and memory mapping. By unifying 
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the internal representation of partitioning and 

mapping, we can facilitate the memory 

parallelism in an efficient and precise way. 

2. Preprocessing for eliminating unnecessry

dependences

In this subsection we describe array 

replication techniques to enable compilers to 

uncover parallelism opportunities in loop 

computations that are traditionally impeded by 

both anti and output-dependences. We focus 

on partial array replication across loop 

iterations and the same loop iteration. When 

two computations, that execute serially, access 

the same array location, reading its previous 

value and then writing a new value into the 

location, this gives rise to an anti-dependence 

between them. Similarly when two computation 

use the same location to store consecutive 

values that are otherwise independent creates 

an output-dependence. These dependences can 

be eliminated by creating a copy of the partial 

array, that each computation freely accesses. 

Each computation uses a distinct memory 

location to write and read a value, and in the 

absence of true-dependences between these 

loops nest, they can execute concurrently. 

Therefore, we replicate repeatedly accessed 

array locations (or overlapped regions) to 

make both array references independent, thus, 

each array reference can be mapped to 

separate memory bank. 

This partial array replication technique 

explores a space-time tradeoff. In order to 

eliminate anti-, output-and input-dependences, 

the implementation requires additional memory 

space. In addition, some execution time 

overhead is incurred in updating the copies to 

enforce the original program data 

dependences. The analysis abstractions, in 

cooperation with estimates of memory space 

usage, allow for an effective algorithm to 

manage this tradeoff and adjust, possibly 

dynamically, the performance of the 

implementation in response to available 

resources. 

In this section we describe such replication 

procedure by intersecting both linear array 

access descriptors. Intersecting two arbitrary 

array access descriptors is very complex and 

probably intractable. But if two array 

descriptors have the same strides, or the 

strides of one are a subset of the strides of 

the other, which has been quite often true in 

our experiments, then they are similar enough 

to make the intersection algorithm tractable. 

Fig. 3. The algorithm for finding the intersection 

of both linear array descriptors

To illustrate intersection with two array 

access pattern descriptors, we present in 

Figure 3 one simple intersection algorithm, 

which accepts two descriptors A and A', and 

produces a set of array access pattern 

descriptors that summarize the array regions 

represented by A ∩ A'. The output is a linear 

array access pattern descriptor set Over­lap. 

An array descriptor set called Non-overlap 

represents the area of A that does not overlap 

the area of A'. To compute Non-overlap, the 

algorithm compares the left ends and right 

ends of the regions represented by A and A'.
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Fig. 4. Intersection of the two references

For this, the offset distance between the 

two access descriptors needs to be calculated. 

If there is an area of overlap, then the area is 

removed from A. The remaining elements in A 

form the set Non-overlap. Since all 

descriptors in Non-overlap can be part of the 

result, they could be combined in the final 

output later when the computation on Overlap 

is complete. 

To compute Overlap, the algorithm first 

finds a number θ, which is the least common 

multiple of the strides of both A and A', and 

forms two sets of sub-region access 

descriptors, respectively, of A and A' with θ 

as their strides. Then, it finds which of the 

sub-region descriptors in the two sets access 

the same elements within Overlap. Note that a 

member of the sub-region descriptors in an 

input descriptor always represents a subset of 

the descriptor. Thus, we find a pair of 

sub-region descriptors, one from each set, 

which a reseparated by a distance equal to a 

multiple of θ. All those remaining sub-region 

descriptors of A constitute the set Overlap.

To explain this algorithm with an example, 

consider the code in Figure 4. In order to 

partition the array a within the loop of Figure 

4, we would have to identify what region of 

the array a is overlapped. For the code in 

Figure 4, we would need to perform 0+[2,12] 

∩ 3+[3,18], then determine whether the result 

is empty. According to the intersection 

algorithm, the nonoverlapping area in 0+[2,12] 

should be first found, as shown in Figure 4:

 Non-overlap =0+[2, 2]. 

In the overlapping area, we intersect 

4+[2,12], which is the subregion of 0+[2,12] 

in the area, with 3+[3,18]. For this, we first 

find the least common multiple (LCM) of the 

strides of both accesses, LCM(2,3)=6. Then, 

we calculate a set of sub-region descriptors 

(which have θ as a stride) for 4+[2,12], 

which is S1 = {4+[6,6], 6+[6,6]}, and a set 

of sub-region descriptors, which have stride=

θ, for 3+[3,12], which is S2 = {3+[6,12], 

6+[6,6]}. By intersecting S2 with S1, we can 

obtain the results in the overlapping area. The 

operation S1 ∩ S2 is straightforward since 

they have a common stride 6; that is, it can 

be performed by simply comparing the 

elements of the sets. This results in: 

Overlap =S1 ∩ S2 = {6+[6,6]}. 

This process continues until it can either 

be determined that no overlap occurs, or until 

the inner-most dimension is reached where it 

can make the final determination as to whether 

there is an intersection between the two. A 

set of descriptors from the intersection 

procedure is returned, and as each recursion 

returns, a dimension is added to the results of 

descriptors. 

We calculate the size of overlapped region 

from the descriptors as a result of the 

procedure. Based on the size of overlapped 

region, our approach determine whether it is 

beneficial to make partially replicated array 

partitions. This is determined in the placement 

decision step described in the next section. If 

our procedure determines to replicate some 

overlapped region (reused data), then the 
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descriptors will be manipulated as partitioned 

arrays in the placement decision step.

3. Partitioning Array References

When two array references access mutually 

exclusive array elements, and thus there is no 

data dependence between them, we can put 

them in separate partitions. For ex­ample, 

consider array references 0+[4,1000], 

1+[4,1000], and 0+[2,1000]. 0+[4,1000] 

accesses a subset of array elements accessed 

by 0+[2,1000],but 1+[4,1000] accesses 

independent array elements. So, we derive a 

unified data layout for 0+[4,1000] and 

0+[2,1000], and a separate data layout for 

1+[4,1000]. The following proposition 

pro­vides a key property for the proposed 

partitioning algorithm.

Proposition 1. If two n-dimension array access 

descriptors A and A' access independent 

regions then they can be placed in separate 

partitions. This condition is represented by the 

following equation:

′  ′ mod ≠
  mod
where   are the greatest common divider 

of the both strides, and   and ′  are 

the offsets associated with two array access 

descriptors A and A' for each dimension I.

We prove the proposition by contradiction. 

Assuming that the descriptors A and A' access 

dependent regions if the following equation 

holds:

′  ′ mod 
  mod
Rearranging terms,

 ′   ′    mod  
   is the common factor of 

′   and ′    . Thus, 

overlapped region descriptors ⇔ 

′  ′ mod 
  mod
□

The partitioning algorithm uses Proposition 

1 for each array to divide array references 

into partitions. The algorithm for partitioning 

the array references in a loop nest is shown 

in Figure 5.

Fig. 5. Partitioning algorithm

 Initially, all array references represented 

as linear array access descriptors belong to a 

single partition, Set. Then, procedure Partition 

separates the descriptors (array references) 

into different partitions whenever it can prove 

they are accessing in dependent array 

elements using Proposition1. Array references 

within a partition are recursively partitioned 

according to Proposition1 until no further 

partitioning is possible. The recursive function 

Partition derives possible subpartitions Set. If 

all references are mapped to the same 

subpartition, then that dimension’s references 

cannot be partitioned, so the algorithm returns 

the result of partitioning the next dimension. 

Otherwise, it attempts to further partition a 

sub-partition according to the current 

dimension. 



352      Efficient Use of On-chip Memory through Profile-Driven Array Reorganization

For example, consider Set = {0+[2,100], 

3+[4,100], 1+[8,100], 5+[8,100]}. The 

common stride GCD(2, 4, 8, 8) is 2. According 

to the condition in Proposition 1, Set is 

divided into two partitions {0+[2,100]}and 

{3+[4,100], 1+[8,100], 5+[8,100]}. The 

second partition is further partitioned into two 

subpartitions {3+[4,100]}and {1+[8,100], 

5+[8,100]}, since GCD(4,8,8) = 4 and (3 mod 

4) ≠  (1 mod 4) = (5 mod 4). Further, the 

second subpartition is divided into two 

subpartitions {1+[8,100]} and {5+[8,100]}. 

Therefore, all four references in Set access 

completely independent array elements, and 

are mapped to different bank in on-chip 

memories.

Ⅴ. The Proposed Approach: Array 

Mapping

In our architectural model (CGRA), the only 

resources that might have conflict are the 

memory ports. For example, typical 

architecture permits only one 1-cycle read 

from any memory per cycle. Two read 

operations accessing the same memory that 

appear at the same level of the precedence 

schedule must be scheduled at different levels 

of an execution schedule. Such multiple 

accesses to a memory force serialization of 

access even if the operations using the data 

are independent (and thus could be scheduled 

concurrently). 

This concurrent accessing, however, raises 

the issue of resource contention (at the 

memory port) when two or more concurrently 

executing loop nests access the same array 

region, i.e., the loops exhibit input 

dependences. To overcome this memory 

contention, we take advantage of the flexibility 

of partitioned data placement decision in 

banked memory architectures. By optimizing 

placement of pieces of arrays, the parallel 

loop nests can therefore execute concurrently 

due to the absence of anti-dependences but 

also be contention-free. To that end, we use 

factor of memory access conflict to determine 

better data placement in banked on-chip 

memory, since it shows how many concurrent 

accesses happen into the same memory bank 

at the same iteration. Factor of memory 

access conflict is calculated as follow : 

Conflict(p) =

(accessVector(p') ∩ accessVector(p)) 

where p is a partition and p' is the others of 

an array. Memory access pattern of an array 

in a loop is represented as a memory access 

vector in loop iteration space [6], thus, access 

Vector of p represents the set of accessing 

iteration number of loop iterations. It gives the 

number of conflict from some array partitions 

placing in the same memory bank. Based on 

the factor, we prevent large memory access 

conflict occurred by limit number of memory 

port. Consequently, we can avoid serialization 

of memory accessing. This factor used for 

calculating the profit described in the next 

subsection. 

Memory mapping creates as many memories 

as needed to maximize opportunities of parallel 

memory accesses for each array in isolation, 

and in an architecture dependent way. In this 

section, we describe how to map array 

partitions to a limited number of physical 

memories such that the exposed parallel 

memory access opportunities are preserved as 

much as possible. 

To map the partitioned arrays to a specific 

target architecture, we must take the following 

into account: (1) the number of physical 

memories or the number of bank of an 

on-chip memory ; (2) competing demands 

of multiple array partitions. Intuitively, we 

want to distribute array partitions across  

physical memory modules as evenly as 

possible, since it preserves the exposed 

parallel memory access opportunities, and 

minimizes the address bits required for each 

physical memory. 

The actual memory operations that can be 
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scheduled concurrently are affected by the 

physical memory mapping. We denote   as 

the total number of array partitions across all 

the arrays in a loop nest. If   ≤  , we 

distribute each array partition to a different 

physical memory. If > , some array 

partitions must be mapped to the same 

physical memory, thereby possibly sacrificing 

potential memory parallelism. 

Some array partitions carry a scheduling 

constraint such that the operations on the 

right hand side of an assignment statement 

must be scheduled before the operations on 

the left hand side. We map the array partitions 

that carry the scheduling constraint to the 

same physical memory to give other less 

constrained array partitions more freedom to 

be mapped to separate physical memories.

1. Problem Definition

We describe the problem and solution for a 

set of memory banks with uniform latency. 

First of all, we define the problem as follow:

Definition 1. Optimal Array Reorganization 

Problem:

Objective function: find optimal placement 

results of the partitioned arrays   which 

maximized the performance gain, 


∈

(Profit(p) - Overhead(p)).

The profit and overhead of an allocation of 

array partitions  , ...,   to  banks for a 

loop l is given as the following: 

- profit: This is the amount of memory access 

cycle reduction calculated by how many 

memory accesses can be parallelized, Profi

t(P).It is calculated by adding a dry-run 

stage with pre-determined placement with 

the minimum memory access conflict factor. 

Array partitions having large factor of the 

access conflict should be placed in different 

bank. If it is impossible, it can be 

permissable that such array partitions with 

lower conflict factor might be placed in the 

same bank. Thus, the value of profit is 

computed by the number of memory access 

cycle reduction per Conflict(P).

- Overhead: Data transfer overhead is 

represented by Overhead(P), which gives the 

increased data transfer overhead by partially 

replicated array partitions.

The problem is subject to the capacity 

constraint. It is defined as following: Let the n 

on-chip memory modules have limited 

capacities C={ }. For a set of assigned 

array partitions ∈ , 
∈

Size(p) must not 

exceed the each capacity C of the 

corresponding memory. 

Our approach exploits a greedy approach to 

effectively seek an optimal placement. The 

following subsection presents a best first 

search method for each problem instance, P = 

 , ...,  . The problem instance consists of a 

set of array partitions and candidates of array 

partitions generated from non-partitioned 

arrays. Our mapping approach takes two steps. 

First, a set of array partitions are evenly 

assigned to physical memories. Second, a set 

of candidates of array partitions are assigned 

by the best first search method. 

Best First Search: Each problem instance P 

is an objective of the best first search. The 

best first search is used to search for an 

optimal data layout in multiple memory 

modules. 

The search algorithm builds a search tree, 

and stores at each node the maximum 

performance gain and the minimum 

performance gain on the objective function for 

the problem instance. 

The search scheme repeatedly (1) selects 

an unprocessed array partition, (2) processes 

the partition and then creates its the best 

child, and (3) propagates new max and min 

values through the tree and uses these values 

to select the next node. It performs this 

sequence of three stages until the search tree 

contains no more unprocessed array partitions. 
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Note that whenever an array partition is 

observed, its best child is immediately created, 

producing a search tree. Thus, the search 

tree’s a new leaf is always the child which 

have the best values. Let us now consider the 

three major steps in more detail. 

The first step is to find the node to 

process next. The best first search selects a 

leaf array partition by descending the search 

tree, starting at the root and taking the child 

with the best values at unobserved candidate 

arrays. Our implementation orders the child 

from left to right so that their values are 

non-decreasing with a priority queue. 

The second step is to process and expand 

the node. For each of these unobserved nodes, 

maximum and minimum performance gain on 

its objective function is obtained, and a best 

unobserved array partition is chosen to branch 

on. The node is created and then processed 

and expanded in the same way. At each step, 

the set of nodes contributing to the maximum 

performance gain is stored to a solution set. 

The third step is to propagate the new 

performance gain and prune the tree. Starting 

at the nodes just created and working up the 

tree to the root, the value of the maximum 

performance gain and the minimum 

performance gain are updated for each node. 

As this stage assigns and reassigns 

performance gain, it checks to see if any node 

has one child whose maximum performance 

gain does not exceed the minimum 

performance gain of the other child. In such a 

case the array partition of maximum can be no 

better than that of the partition of minimum, 

so the partition of maximum and all its 

descendants are removed from the tree. 

Finally, this search procedure a placement of 

array partitions as an optimal solution.

Ⅵ. Experiments

We conducted several experiments to 

assess the effectiveness of our approach. We 

explored how much our approach influences 

the performance while minimizing the 

overhead. The goal of our experiments was to 

compare our approach for maximizing 

utilization of the multiple on-chip memories 

against without the proposed approach for a 

number of multimedia kernel codes from 

DSPstones [7], Mediabench [8].

1. Result

The proposed technique is implemented in a 

commercial C compiler framework, called 

ICD-C compiler from Dortmund University [9]. 

The compiler flag O3 is used, but loop 

permutations and loop tiling are explicitly 

disabled to isolate the influences of the 

proposed technique. The experimental input is 

a set of kernel applications written in C; 

namely, a digital finite impulse response filter 

(FIR), Fast Fourier Transform (FFT), Susan 

image noise filter (SUSAN), adaptive digital 

filter (LMS), convolution, and DOT product. 

Their input data sets are given in Table 1. 

Our technique is performed on unrolled codes 

(factor 2) to exploit instruction level and 

memory access parallelism. There is one 

exceptional case. Since Dot_product consists 

of few lines of codes, thus unroll factor 8 is 

used.

Table 1. Program and inputs

The actual experiments were conducted on 

a coarse grained reconfigurable array 

processor, called RSPA [10]. RSPA consists of 

16 (4x4) processing elements (PEs) in which 

each PE is connected to 4 neighboring PEs 

and 4 diagonal ones, as illustrated in Section 

2. The local memory architecture has 4 banks 

(with two sets), each connected to each row. 

The local memory is double buffered in 

hardware and the buffers can be switched in 

one cycle. The size of each buffer is 8Kbytes,
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Table 2. Memory access cycles and runtime reduction compared to the baseline [11] 

and is connected to the system memory 

through a high-performance 16-bit pipelined 

bus. The system memory operates at half the 

frequency of the processor, thus the memory 

bandwidth is 16 bits per 2 cycles. 

As compared to a conventional architecture, 

the array processor have no instruction or 

data cache, and the microarchitecture is 

configured specifically for the target 

application. The target architecture for this 

experiment assumes a single array processor 

with multiple external SDRAM memories, and 

an external main processor that can load the 

data and configuration onto the array 

processor, initiate its computation, and retrieve 

its results, as illustrated in Section 2. 

In the following experiment, we compare 

the performance obtained by our array 

reorganization with two sets of SRAM(16KB, 4 

banks x 2KB x 2 sets) against without ours. 

We report results obtained from simulation of 

the designs derived after perform­ing these 

data and code transformations. For the 

comparison, since there exist no other 

profile-driven compiler method to reorganize 

arrays for CGRAs, we use the most general 

existing data un-aware code mapping method 

from [9]. It maps the entire array into a 

single bank. Thus we can purely obtain how 

much improve the performance by applying the 

proposed technique. The performance 

improvements (decrease in cycle counts) and 

memory access time reduction due to our 

technique were measured in percent, using 

formula ((ORIG-OPT) / ORIG)*100.

-ORIG : original code, and

-OPT : optimized code with the proposed 

technique.

The first set of results in Table 2, shows 

the time reduction (in percentage), for each of 

the program kernels with applying our 

approach against without ours. With higher 

memory latencies, the benefits of memory 

parallelism increase, so we conservatively 

assign a low memory latency for both reads 

and writes of two cycle each, which is the 

case on our target platform when all memory 

accesses are fully pipelined. As compared to 

solutions that reorganize computation to 

optimize for memory parallelism assuming a 

fixed data layout (without applying our 

technique), our approach yields high memory 

parallelism for a fixed computation order by 

reorganizing the data. We observe greater than 

a 30% in the number of memory accesses 

reduction in a loop code and memory access 

cycles reduction ranging from 10% to 25% for 

8 banks, as compared to the baseline [9] with 

unrolling twice. 

The table also shows performance 

improvements achieved by applying the 

pro­posed algorithm. The overall performance 

improvement from our technique ranges from 

6.4% to 14.28%, and the average performance 

improvement is 9.81%. Considering there is no 

modification made to existing instruction 

scheduler and the performance comparison is 

made to highly optimized code (-O3), 

performance gain from our technique was 

impressive. 

Lower speedups were obtained for FFT and 

Susan because these kernels are highly 

compute bound and are not able to take 

advantage of the additional memory parallelism 
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exposed by our data placement.

Figure 6 shows improvement of parallelism 

by the proposed technique. The y-axis 

illustrates how much improved the parallelism 

from normalized value 1 which is generated by 

the baseline [11]. In general, more 

improvement in memory parallelism leads to 

more performance improvement.

Fig. 6. Results of improved parallelism

In our studies, our approach is always 

better than the comparison. It is not surprising 

result since multimedia application have lots of 

memory parallelism. In addition, traditional 

approaches are normally hard to optimize such 

applications. As we go from 4 banks to higher 

number of banks, we see the growing 

importance of our optimization with larger 

unroll factors. Since larger unroll factors for 

the loops are needed for array reorganization 

to fully utilize the memory bandwidth of the 

platform. It is also important to note that 

increasing the number of banks and size 

sometimes gives a relatively small additional 

benefit on average. The reason is that 

complex data dependence limits inherent 

memory parallelism. Such a case is also seen 

for parallelizing compilers. A very large banks 

does not always lead to great performance 

improvement than a moderate size of SRAM.

Ⅶ. Related Work

Most previous work on CGRA [10, 11, 12] 

does not explicitly consider the local memory 

architecture or data placement. They assume 

that all the required data is already present in 

the local memory, and every load/store PE can 

access that data whenever they need to. One 

exception to this is [13], which assumes a 

hierarchical memory architecture, where the 

PEs are connected to a L0 local memory, 

which connects to the external main memory 

through an L1 local memory. Since both these 

local memories are scratchpads, and therefore 

statically scheduled, their main interest is in 

improving the reuse between the L0 and L1 

local memories. An early work [14] on CGRA 

presents a methodology to evaluate memory 

architectures for CGRA mapping; however, it 

lacks a detailed mapping algorithm. 

Optimizing locality if data accesses has 

been the main focus of several previous 

studies [15], see the references therein. Most 

of these techniques use linear loop 

trans­formations based on reuse vector space 

[16, 17] and cost based [13, 18] abstractions. 

The main limitation of these techniques is 

inherent data dependences in the code and 

imperfectly nested loop structures. 

Many shared memory systems replicate 

data to enable concurrent read access [19, 

20]. This optimization is clearly required to 

achieve any reasonable level of performance in 

systems that do not implicitly replicate data 

for concurrent read access, programmers 

explicitly replicate the data [21]. Similarly, 

renaming is designed to allow for concurrent 

operations that have output and 

anti-dependences but where there is no flow 

of values between statements of a loop nest. 

It has been used mainly for scalar variables as 

for arrays the additional memory costs make it 

very unprofitable for traditional high-end 

architectures. Array data-flow analysis [22, 

23] focuses on data dependence analysis that 

is used to determine conditions for 

parallelization. 

The work [1] is to show how linear 

memory access descriptor is used to analyze 

and simplify array access patterns in a 

program for more accurate compiler 
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optimization. Unfortunately, it is designed to a 

static analysis. In multimedia applications, such 

techniques are not sufficiently powerful to deal 

with all cases encountered in practice which is 

frequently. To overcome this limitation, the 

proposed approach is designed to a hybrid 

analysis (profile based technique). Thus, it 

provides the most accurate mem­ory access 

pattern summary. Based on such memory 

access pattern summary, we solve for an 

array reorganization problem to fully utilize 

memory parallelism. The proposed technique is 

based on the application specific data access 

patterns to optimize array partitioning and 

mapping.

Ⅷ. Conclusion

In this paper, we described an algorithm for 

deriving reorganized array data layouts in 

multiple memory banks for array-based 

computations, to facilitate high-bandwidth 

parallel memory accesses in modern 

architectures where multiple memory banks 

can simultaneously feed one or more functional 

units. By examining data dependences and 

array subscript expressions, our algorithm 

automatically derives application specific 

layouts in multiple memories. 

A key consideration when applying this 

array reorganization algorithm is the feasibility 

of reorganizing data in memory. Here we 

considered loop nest computations, but when 

expanding to full applications, either the 

compiler must use the same layout throughout 

the program. Depending on the architecture 

and the application, such a re­organization 

could be more costly than the performance 

gain from increased memory parallelism. 

A major focus of our current work is to 

formulate this array reorganization optimization 

as an interprocedural and global analysis 

problem, and compare the results with 

solutions that use efficient data reorganization. 

By using our technique, the experimental 

results show that the average improvement on 

performance is 9.8% compared with the 

existing method.
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