
 대한임베디드공학회논문지 제 6권 제 6호 2011년 12월 345

Efficient Use of On-chip Memory through

Profile-Driven Array Reorganization

Doosan Cho, Jonghee Youn*

Abstract : In high performance embedded systems, the use of multiple on-chip memories is an

essential architectural feature for exploiting inherent parallelism in multimedia applications. This

feature allows multiple data accesses to be executed in parallel. However, it remains difficult to

effectively exploit of multiple on-chip memories. The successful use of this architecture strongly

depends on how to efficiently detect and exploit memory parallelism in target applications. In this

paper, we propose a technique based on a linear array access descriptor [1], which is generated

from profiled data, to detect and exploit memory parallelism. The proposed technique tackles an

array reorganization problem to maximize memory parallelism in multimedia applications. We

present preliminary experiments applying the proposed technique onto a representative coarse

grained reconfigurable array processor (CGRA) with multimedia kernel codes. Our experimental

results demonstrate that our technique optimizes data placement by putting independent data on

separate storage. The results exhibit 9.8% higher performance on average compared to the

existing method.

Keywords : Compiler, Memory Hierarchy, Execution time, Data Placement

Ⅰ. Introduction

 As embedded systems grow more complex

and large to satisfy diverse demands from the

market, the processor-memory speed gap is

becoming a critical design issue. Since the

increase in memory access speed has not kept

up with increases in processor speed, memory

access contention has increased, resulting in a

longer memory access latency in systems

today. This makes the memory access cost

much greater than the computation cost. Thus,

improvement in memory performance is critical

* Corresponding Author

Manuscript received : 2011. 05. 04.,

Revised : 2011. 06. 21., 2011. 07. 04.,

Accepted : 2011. 07. 07.

Doosan Cho : Sunchon National Univ.

Jonhhee Youn : Gangneung-Wonju National

University

to the successful use of embedded systems.

To improve the overall performance, many

DSPs employ Harvard architecture, which

provides simultaneous accesses to separate

on-chip memory modules for instructions and

data [2, 3]. Some DSP processors are further

equipped with multiple data-memory banks that

are accessible in parallel, such as Motorola

56000 [2] and Gepard Core DSPs [3, 4]. Since

data can be partitioned and allocated to

separate data-memory banks and can be

accessed simultaneously, the multiple

data-memory bank architecture offers

potentially higher memory bandwidth and, thus,

improves the system performance. This

architectural feature is very attractive for

high-performance DSP applications. In fact,

many DSP routines, such as finite impulse

response (FIR) filters, require the convolution

of multiple data arrays as a kernel operation.

Processors with multiple memory banks can

346 Efficient Use of On-chip Memory through Profile-Driven Array Reorganization

Fig. 1. Gray boxes represent the array elements accessed and arrows with black heads and white

heads keep track of the access driven by indices  and  (or ), respectively. The base indicates

the offset of the first accesses from the beginning of the array.

achieve higher memory bandwidth for this kind

of application. However, many existing high

level language compilers cannot exploit the

advantage of multiple data-memory banks

effectively.

 As an example in Figure 1, the accessed

region of array a by the references a[ ×

8+] and a[ +8×  +l] is not overlapped.

Concurrent accesses of the references is

desirable. However, a traditional naive

approach places the array into a single

memory, resulting into serialization of the

references. Theoretically, it would seem that

assigning a separate memory to each

independently accessed region of the array

would optimize the performance, but in

practice, data dependences limit the amount of

parallelism, resulting in no significant

performance gain from an arbitrarily large

number of memories.

In Figure 1, the non-affine subscripts often

prevent to analyze the dependence relation

with affine references. It is hard to detect

parallelism of array references with such

complex references through traditional

approaches. To overcome this difficulty, we

propose a technique to parallelize affine array

accesses considering dependence relation with

non-affine references. For simplicity of

presentation, none of the algorithms are

designed to directly handle non-affine

subscript expressions. The candidates of our

approach is the arrays with affine subscript

expressions. It is important consideration since

most audio and video processing and

multimedia program consists of affine and

non-affine references.

Specifically, we present an algorithm that

performs an array reorganization for exploiting

multiple memories driven by profile

information, so that the array is mapped to

memory according to access patterns in the

code. We also describe how to reorganize the

array in memory from the standard layout in a

single memory to the optimized layout in

multiple on-chip memories. We present a

comprehensive set of performance results,

derived automatically by our compiler for

several multimedia kernels.

The organization of the paper is the

following. The next section describes an

architecture model which motivates the

proposed approach. Section 3 presents the

overview of the array reorganization algorithm.

Section 4 describes the analyses and

transformations to identify the parallel memory

accesses. Section 5 describes how to map

array partitions to a limited number of physical

memories. Section 6 describes how we

re­organize array data from/to a naive layout

in a single memory to/from a reorganized

layout in multiple memories. Section 7

presents a set of experimental results derived

automatically by our compiler. We survey

 대한임베디드공학회논문지 제 6권 제 6호 2011년 12월 347

Fig. 2. Workflow of the proposed approach

related work in Section 8. In Section 9 we

present conclusions.

Ⅱ. Background on CGRAs

The main components of CGRA include the

PE (Processing Element) array and the local

memory. The PE array is a 2D array of

possibly heterogeneous PEs connected with a

mesh interconnect, though the exact topology

and the interconnects are architecture

dependent.

The local memory of a CGRA is typically a

high speed, high bandwidth, highly predictable

random access memory that provides

temporary storage space for array data, which

are often input/output of loops that are

mapped to CGRAs. To provide high bandwidth,

local memories are often organized in multiple

banks. For instance the MorphoSys

architecture [5] has 16 banks, every two of

which may be accessed exclusively by each

row of PEs (there are eight rows in total).

In our architecture model, it has a

fundamental restriction that a bank cannot be

accessed by more than two different PEs at

the same time, if the bank consists of two

port cells. (In the rest of the paper we

assume that a bank consist of two read port

and single write port cells, and thus has three

ports.)

If more than two PEs try to access the

same bank at the same time, a bank conflict

occurs. CGRA's communication architecture

must detect such a bank conflict and resolve it

by generating

a stall. Hardware stall ensures that all the

requests from different PEs are serviced

sequentially, but is very expensive because

most of the PEs will be idle during stall

cycles. This can be solved by a compiler

approach, where compiler makes sure that this

does not happen. This paper develops such

technique and show that it is promising.

Ⅲ. Overall Workflow

In order to efficiently solve the array

partitioning and mapping problem, we

formulate them into two problems as itself.

The first problem is to partition arrays within

in­dependently accessed elements. The goal of

the first problem is to improve memory

parallelism. The second problem is to find an

optimal layout of partitioned arrays in the

multiple memory modules to maximize parallel

array accesses.

In the preparation of our approach, it is

performed to normalize a loop iteration step

size, which involves replacing all the instances

of the loop index variable i with s × i, where

s is the step size of loop l. Loop normalization

is always legal.

The workflow of our approach is shown in

Figure 2. The first step is to gather array

access footprint through profiling. In profiling

task, we have several times run our

348 Efficient Use of On-chip Memory through Profile-Driven Array Reorganization

benchmark code with various types of input

set to gather array access footprints. The

profiling information includes several data such

as data type, data location, accessed time

stamp. By using profiling information, linear

array access descriptors are created to

summary all array accesses. And then, array

reference partitioning and memory mapping are

performed by using the array access

descriptors. In array partitioning step, we

divide a set of array references into partitions

that are accessed orthogonal region of the

whole array, and map each partition to a

separate memory. Assuming arrays accessed

within their bounds, if two array references

access mutually exclusive array indices in at

least one dimension, they access independent

array elements. In this case, we put them in

separate partitions. Otherwise, we put them in

the same partition, and derive a single unified

data layout for them based on their common

data access patterns. To maximize the

opportunities of parallel memory accesses, we

create as many partitions as possible.

In the next step, array mapping is

performed to determine placement of

partitioned arrays in multiple memory modules.

Using a formal metric that considers profit to

parallelize array accesses and overhead to

transfer replicated array partitions, candidates

of array partitions to be copied to the best

placement are determined for a loop. In this

step, physical mapping, the compiler binds

each array partition to physical memory, taking

into account memory access conflicts based on

the array access order in the program, to

exploit both memory access and instruction

level parallelism.

After that, the compiler rewrites each array

reference so that the transformed subscript

expression takes into account the position

within the newly formed array in the mapped

memory. Based on the data access patterns of

the code, we insert array distribution/gathering

code to/from multiple memories. Finally,

optimized code with the array partitions are

generated. The following subsections describe

this workflow in detail.

Ⅳ. The Proposed Approach: Array

Partitioning

1. Summarizing Data Access Patterns

Prior techniques for array access analysis

sometimes fail because they are unable to

recognize some hidden simple access regions

shown in Figure 1. To overcome this

limitation, we use a linear array access

descriptor, which is developed from [1],

generated from memory access footprints. It is

designed to represent the access pattern

precisely and enable analysis techniques to

expose the simplicity of array access patterns,

thus improving the memory parallelism.

A linear array access descriptor is

described by the triple start +[stride, span].

The start is the offset, from the first element

of the array, for the first location accessed. A

dimension is a movement through memory with

a consistent stride and a computable number

of steps. The stride gives the distance

between two consecutive array accesses in

one dimension. The span is the distance (in

memory units) between the offsets of the first

and last elements that are accessed in one

dimension.

For example, an access footprint of 0,8,16,

..., 80 will be described by a linear array

access descriptor as 0+[8,80]. If the array is

accessed in a two level nested loop, which the

outer loop has step 1 and span 5, the

descriptor might be a multi-dimension pattern

like 0+[1,5][8,80]. This has several attractive

properties. It is simple and fast, and it works

quite well if data accesses have predominantly

linear patterns. We notice that, in practice, a

significant portion of instructions do exhibit

linear access behavior and hence can be

captured by a small number of descriptors. We

use the descriptor to describe both array

partitioning and memory mapping. By unifying

 대한임베디드공학회논문지 제 6권 제 6호 2011년 12월 349

the internal representation of partitioning and

mapping, we can facilitate the memory

parallelism in an efficient and precise way.

2. Preprocessing for eliminating unnecessry

dependences

In this subsection we describe array

replication techniques to enable compilers to

uncover parallelism opportunities in loop

computations that are traditionally impeded by

both anti and output-dependences. We focus

on partial array replication across loop

iterations and the same loop iteration. When

two computations, that execute serially, access

the same array location, reading its previous

value and then writing a new value into the

location, this gives rise to an anti-dependence

between them. Similarly when two computation

use the same location to store consecutive

values that are otherwise independent creates

an output-dependence. These dependences can

be eliminated by creating a copy of the partial

array, that each computation freely accesses.

Each computation uses a distinct memory

location to write and read a value, and in the

absence of true-dependences between these

loops nest, they can execute concurrently.

Therefore, we replicate repeatedly accessed

array locations (or overlapped regions) to

make both array references independent, thus,

each array reference can be mapped to

separate memory bank.

This partial array replication technique

explores a space-time tradeoff. In order to

eliminate anti-, output-and input-dependences,

the implementation requires additional memory

space. In addition, some execution time

overhead is incurred in updating the copies to

enforce the original program data

dependences. The analysis abstractions, in

cooperation with estimates of memory space

usage, allow for an effective algorithm to

manage this tradeoff and adjust, possibly

dynamically, the performance of the

implementation in response to available

resources.

In this section we describe such replication

procedure by intersecting both linear array

access descriptors. Intersecting two arbitrary

array access descriptors is very complex and

probably intractable. But if two array

descriptors have the same strides, or the

strides of one are a subset of the strides of

the other, which has been quite often true in

our experiments, then they are similar enough

to make the intersection algorithm tractable.

Fig. 3. The algorithm for finding the intersection

of both linear array descriptors

To illustrate intersection with two array

access pattern descriptors, we present in

Figure 3 one simple intersection algorithm,

which accepts two descriptors A and A', and

produces a set of array access pattern

descriptors that summarize the array regions

represented by A ∩ A'. The output is a linear

array access pattern descriptor set Over­lap.

An array descriptor set called Non-overlap

represents the area of A that does not overlap

the area of A'. To compute Non-overlap, the

algorithm compares the left ends and right

ends of the regions represented by A and A'.

350 Efficient Use of On-chip Memory through Profile-Driven Array Reorganization

Fig. 4. Intersection of the two references

For this, the offset distance between the

two access descriptors needs to be calculated.

If there is an area of overlap, then the area is

removed from A. The remaining elements in A

form the set Non-overlap. Since all

descriptors in Non-overlap can be part of the

result, they could be combined in the final

output later when the computation on Overlap

is complete.

To compute Overlap, the algorithm first

finds a number θ, which is the least common

multiple of the strides of both A and A', and

forms two sets of sub-region access

descriptors, respectively, of A and A' with θ

as their strides. Then, it finds which of the

sub-region descriptors in the two sets access

the same elements within Overlap. Note that a

member of the sub-region descriptors in an

input descriptor always represents a subset of

the descriptor. Thus, we find a pair of

sub-region descriptors, one from each set,

which a reseparated by a distance equal to a

multiple of θ. All those remaining sub-region

descriptors of A constitute the set Overlap.

To explain this algorithm with an example,

consider the code in Figure 4. In order to

partition the array a within the loop of Figure

4, we would have to identify what region of

the array a is overlapped. For the code in

Figure 4, we would need to perform 0+[2,12]

∩ 3+[3,18], then determine whether the result

is empty. According to the intersection

algorithm, the nonoverlapping area in 0+[2,12]

should be first found, as shown in Figure 4:

 Non-overlap =0+[2, 2].

In the overlapping area, we intersect

4+[2,12], which is the subregion of 0+[2,12]

in the area, with 3+[3,18]. For this, we first

find the least common multiple (LCM) of the

strides of both accesses, LCM(2,3)=6. Then,

we calculate a set of sub-region descriptors

(which have θ as a stride) for 4+[2,12],

which is S1 = {4+[6,6], 6+[6,6]}, and a set

of sub-region descriptors, which have stride=

θ, for 3+[3,12], which is S2 = {3+[6,12],

6+[6,6]}. By intersecting S2 with S1, we can

obtain the results in the overlapping area. The

operation S1 ∩ S2 is straightforward since

they have a common stride 6; that is, it can

be performed by simply comparing the

elements of the sets. This results in:

Overlap =S1 ∩ S2 = {6+[6,6]}.

This process continues until it can either

be determined that no overlap occurs, or until

the inner-most dimension is reached where it

can make the final determination as to whether

there is an intersection between the two. A

set of descriptors from the intersection

procedure is returned, and as each recursion

returns, a dimension is added to the results of

descriptors.

We calculate the size of overlapped region

from the descriptors as a result of the

procedure. Based on the size of overlapped

region, our approach determine whether it is

beneficial to make partially replicated array

partitions. This is determined in the placement

decision step described in the next section. If

our procedure determines to replicate some

overlapped region (reused data), then the

 대한임베디드공학회논문지 제 6권 제 6호 2011년 12월 351

descriptors will be manipulated as partitioned

arrays in the placement decision step.

3. Partitioning Array References

When two array references access mutually

exclusive array elements, and thus there is no

data dependence between them, we can put

them in separate partitions. For ex­ample,

consider array references 0+[4,1000],

1+[4,1000], and 0+[2,1000]. 0+[4,1000]

accesses a subset of array elements accessed

by 0+[2,1000],but 1+[4,1000] accesses

independent array elements. So, we derive a

unified data layout for 0+[4,1000] and

0+[2,1000], and a separate data layout for

1+[4,1000]. The following proposition

pro­vides a key property for the proposed

partitioning algorithm.

Proposition 1. If two n-dimension array access

descriptors A and A' access independent

regions then they can be placed in separate

partitions. This condition is represented by the

following equation:

′  ′ mod ≠
  mod
where  are the greatest common divider

of the both strides, and  and ′ are

the offsets associated with two array access

descriptors A and A' for each dimension I.

We prove the proposition by contradiction.

Assuming that the descriptors A and A' access

dependent regions if the following equation

holds:

′  ′ mod 
  mod
Rearranging terms,

 ′   ′    mod  
  is the common factor of

′   and ′    . Thus,

overlapped region descriptors ⇔

′  ′ mod 
  mod
□

The partitioning algorithm uses Proposition

1 for each array to divide array references

into partitions. The algorithm for partitioning

the array references in a loop nest is shown

in Figure 5.

Fig. 5. Partitioning algorithm

 Initially, all array references represented

as linear array access descriptors belong to a

single partition, Set. Then, procedure Partition

separates the descriptors (array references)

into different partitions whenever it can prove

they are accessing in dependent array

elements using Proposition1. Array references

within a partition are recursively partitioned

according to Proposition1 until no further

partitioning is possible. The recursive function

Partition derives possible subpartitions Set. If

all references are mapped to the same

subpartition, then that dimension’s references

cannot be partitioned, so the algorithm returns

the result of partitioning the next dimension.

Otherwise, it attempts to further partition a

sub-partition according to the current

dimension.

352 Efficient Use of On-chip Memory through Profile-Driven Array Reorganization

For example, consider Set = {0+[2,100],

3+[4,100], 1+[8,100], 5+[8,100]}. The

common stride GCD(2, 4, 8, 8) is 2. According

to the condition in Proposition 1, Set is

divided into two partitions {0+[2,100]}and

{3+[4,100], 1+[8,100], 5+[8,100]}. The

second partition is further partitioned into two

subpartitions {3+[4,100]}and {1+[8,100],

5+[8,100]}, since GCD(4,8,8) = 4 and (3 mod

4) ≠ (1 mod 4) = (5 mod 4). Further, the

second subpartition is divided into two

subpartitions {1+[8,100]} and {5+[8,100]}.

Therefore, all four references in Set access

completely independent array elements, and

are mapped to different bank in on-chip

memories.

Ⅴ. The Proposed Approach: Array

Mapping

In our architectural model (CGRA), the only

resources that might have conflict are the

memory ports. For example, typical

architecture permits only one 1-cycle read

from any memory per cycle. Two read

operations accessing the same memory that

appear at the same level of the precedence

schedule must be scheduled at different levels

of an execution schedule. Such multiple

accesses to a memory force serialization of

access even if the operations using the data

are independent (and thus could be scheduled

concurrently).

This concurrent accessing, however, raises

the issue of resource contention (at the

memory port) when two or more concurrently

executing loop nests access the same array

region, i.e., the loops exhibit input

dependences. To overcome this memory

contention, we take advantage of the flexibility

of partitioned data placement decision in

banked memory architectures. By optimizing

placement of pieces of arrays, the parallel

loop nests can therefore execute concurrently

due to the absence of anti-dependences but

also be contention-free. To that end, we use

factor of memory access conflict to determine

better data placement in banked on-chip

memory, since it shows how many concurrent

accesses happen into the same memory bank

at the same iteration. Factor of memory

access conflict is calculated as follow :

Conflict(p) =

(accessVector(p') ∩ accessVector(p))

where p is a partition and p' is the others of

an array. Memory access pattern of an array

in a loop is represented as a memory access

vector in loop iteration space [6], thus, access

Vector of p represents the set of accessing

iteration number of loop iterations. It gives the

number of conflict from some array partitions

placing in the same memory bank. Based on

the factor, we prevent large memory access

conflict occurred by limit number of memory

port. Consequently, we can avoid serialization

of memory accessing. This factor used for

calculating the profit described in the next

subsection.

Memory mapping creates as many memories

as needed to maximize opportunities of parallel

memory accesses for each array in isolation,

and in an architecture dependent way. In this

section, we describe how to map array

partitions to a limited number of physical

memories such that the exposed parallel

memory access opportunities are preserved as

much as possible.

To map the partitioned arrays to a specific

target architecture, we must take the following

into account: (1) the number of physical

memories or the number of bank of an

on-chip memory ; (2) competing demands

of multiple array partitions. Intuitively, we

want to distribute array partitions across 

physical memory modules as evenly as

possible, since it preserves the exposed

parallel memory access opportunities, and

minimizes the address bits required for each

physical memory.

The actual memory operations that can be

 대한임베디드공학회논문지 제 6권 제 6호 2011년 12월 353

scheduled concurrently are affected by the

physical memory mapping. We denote  as

the total number of array partitions across all

the arrays in a loop nest. If  ≤  , we

distribute each array partition to a different

physical memory. If > , some array

partitions must be mapped to the same

physical memory, thereby possibly sacrificing

potential memory parallelism.

Some array partitions carry a scheduling

constraint such that the operations on the

right hand side of an assignment statement

must be scheduled before the operations on

the left hand side. We map the array partitions

that carry the scheduling constraint to the

same physical memory to give other less

constrained array partitions more freedom to

be mapped to separate physical memories.

1. Problem Definition

We describe the problem and solution for a

set of memory banks with uniform latency.

First of all, we define the problem as follow:

Definition 1. Optimal Array Reorganization

Problem:

Objective function: find optimal placement

results of the partitioned arrays  which

maximized the performance gain,


∈

(Profit(p) - Overhead(p)).

The profit and overhead of an allocation of

array partitions  , ...,  to  banks for a

loop l is given as the following:

- profit: This is the amount of memory access

cycle reduction calculated by how many

memory accesses can be parallelized, Profi

t(P).It is calculated by adding a dry-run

stage with pre-determined placement with

the minimum memory access conflict factor.

Array partitions having large factor of the

access conflict should be placed in different

bank. If it is impossible, it can be

permissable that such array partitions with

lower conflict factor might be placed in the

same bank. Thus, the value of profit is

computed by the number of memory access

cycle reduction per Conflict(P).

- Overhead: Data transfer overhead is

represented by Overhead(P), which gives the

increased data transfer overhead by partially

replicated array partitions.

The problem is subject to the capacity

constraint. It is defined as following: Let the n

on-chip memory modules have limited

capacities C={ }. For a set of assigned

array partitions ∈ , 
∈

Size(p) must not

exceed the each capacity C of the

corresponding memory.

Our approach exploits a greedy approach to

effectively seek an optimal placement. The

following subsection presents a best first

search method for each problem instance, P =

 , ...,  . The problem instance consists of a

set of array partitions and candidates of array

partitions generated from non-partitioned

arrays. Our mapping approach takes two steps.

First, a set of array partitions are evenly

assigned to physical memories. Second, a set

of candidates of array partitions are assigned

by the best first search method.

Best First Search: Each problem instance P

is an objective of the best first search. The

best first search is used to search for an

optimal data layout in multiple memory

modules.

The search algorithm builds a search tree,

and stores at each node the maximum

performance gain and the minimum

performance gain on the objective function for

the problem instance.

The search scheme repeatedly (1) selects

an unprocessed array partition, (2) processes

the partition and then creates its the best

child, and (3) propagates new max and min

values through the tree and uses these values

to select the next node. It performs this

sequence of three stages until the search tree

contains no more unprocessed array partitions.

354 Efficient Use of On-chip Memory through Profile-Driven Array Reorganization

Note that whenever an array partition is

observed, its best child is immediately created,

producing a search tree. Thus, the search

tree’s a new leaf is always the child which

have the best values. Let us now consider the

three major steps in more detail.

The first step is to find the node to

process next. The best first search selects a

leaf array partition by descending the search

tree, starting at the root and taking the child

with the best values at unobserved candidate

arrays. Our implementation orders the child

from left to right so that their values are

non-decreasing with a priority queue.

The second step is to process and expand

the node. For each of these unobserved nodes,

maximum and minimum performance gain on

its objective function is obtained, and a best

unobserved array partition is chosen to branch

on. The node is created and then processed

and expanded in the same way. At each step,

the set of nodes contributing to the maximum

performance gain is stored to a solution set.

The third step is to propagate the new

performance gain and prune the tree. Starting

at the nodes just created and working up the

tree to the root, the value of the maximum

performance gain and the minimum

performance gain are updated for each node.

As this stage assigns and reassigns

performance gain, it checks to see if any node

has one child whose maximum performance

gain does not exceed the minimum

performance gain of the other child. In such a

case the array partition of maximum can be no

better than that of the partition of minimum,

so the partition of maximum and all its

descendants are removed from the tree.

Finally, this search procedure a placement of

array partitions as an optimal solution.

Ⅵ. Experiments

We conducted several experiments to

assess the effectiveness of our approach. We

explored how much our approach influences

the performance while minimizing the

overhead. The goal of our experiments was to

compare our approach for maximizing

utilization of the multiple on-chip memories

against without the proposed approach for a

number of multimedia kernel codes from

DSPstones [7], Mediabench [8].

1. Result

The proposed technique is implemented in a

commercial C compiler framework, called

ICD-C compiler from Dortmund University [9].

The compiler flag O3 is used, but loop

permutations and loop tiling are explicitly

disabled to isolate the influences of the

proposed technique. The experimental input is

a set of kernel applications written in C;

namely, a digital finite impulse response filter

(FIR), Fast Fourier Transform (FFT), Susan

image noise filter (SUSAN), adaptive digital

filter (LMS), convolution, and DOT product.

Their input data sets are given in Table 1.

Our technique is performed on unrolled codes

(factor 2) to exploit instruction level and

memory access parallelism. There is one

exceptional case. Since Dot_product consists

of few lines of codes, thus unroll factor 8 is

used.

Table 1. Program and inputs

The actual experiments were conducted on

a coarse grained reconfigurable array

processor, called RSPA [10]. RSPA consists of

16 (4x4) processing elements (PEs) in which

each PE is connected to 4 neighboring PEs

and 4 diagonal ones, as illustrated in Section

2. The local memory architecture has 4 banks

(with two sets), each connected to each row.

The local memory is double buffered in

hardware and the buffers can be switched in

one cycle. The size of each buffer is 8Kbytes,

 대한임베디드공학회논문지 제 6권 제 6호 2011년 12월 355

Table 2. Memory access cycles and runtime reduction compared to the baseline [11]

and is connected to the system memory

through a high-performance 16-bit pipelined

bus. The system memory operates at half the

frequency of the processor, thus the memory

bandwidth is 16 bits per 2 cycles.

As compared to a conventional architecture,

the array processor have no instruction or

data cache, and the microarchitecture is

configured specifically for the target

application. The target architecture for this

experiment assumes a single array processor

with multiple external SDRAM memories, and

an external main processor that can load the

data and configuration onto the array

processor, initiate its computation, and retrieve

its results, as illustrated in Section 2.

In the following experiment, we compare

the performance obtained by our array

reorganization with two sets of SRAM(16KB, 4

banks x 2KB x 2 sets) against without ours.

We report results obtained from simulation of

the designs derived after perform­ing these

data and code transformations. For the

comparison, since there exist no other

profile-driven compiler method to reorganize

arrays for CGRAs, we use the most general

existing data un-aware code mapping method

from [9]. It maps the entire array into a

single bank. Thus we can purely obtain how

much improve the performance by applying the

proposed technique. The performance

improvements (decrease in cycle counts) and

memory access time reduction due to our

technique were measured in percent, using

formula ((ORIG-OPT) / ORIG)*100.

-ORIG : original code, and

-OPT : optimized code with the proposed

technique.

The first set of results in Table 2, shows

the time reduction (in percentage), for each of

the program kernels with applying our

approach against without ours. With higher

memory latencies, the benefits of memory

parallelism increase, so we conservatively

assign a low memory latency for both reads

and writes of two cycle each, which is the

case on our target platform when all memory

accesses are fully pipelined. As compared to

solutions that reorganize computation to

optimize for memory parallelism assuming a

fixed data layout (without applying our

technique), our approach yields high memory

parallelism for a fixed computation order by

reorganizing the data. We observe greater than

a 30% in the number of memory accesses

reduction in a loop code and memory access

cycles reduction ranging from 10% to 25% for

8 banks, as compared to the baseline [9] with

unrolling twice.

The table also shows performance

improvements achieved by applying the

pro­posed algorithm. The overall performance

improvement from our technique ranges from

6.4% to 14.28%, and the average performance

improvement is 9.81%. Considering there is no

modification made to existing instruction

scheduler and the performance comparison is

made to highly optimized code (-O3),

performance gain from our technique was

impressive.

Lower speedups were obtained for FFT and

Susan because these kernels are highly

compute bound and are not able to take

advantage of the additional memory parallelism

356 Efficient Use of On-chip Memory through Profile-Driven Array Reorganization

exposed by our data placement.

Figure 6 shows improvement of parallelism

by the proposed technique. The y-axis

illustrates how much improved the parallelism

from normalized value 1 which is generated by

the baseline [11]. In general, more

improvement in memory parallelism leads to

more performance improvement.

Fig. 6. Results of improved parallelism

In our studies, our approach is always

better than the comparison. It is not surprising

result since multimedia application have lots of

memory parallelism. In addition, traditional

approaches are normally hard to optimize such

applications. As we go from 4 banks to higher

number of banks, we see the growing

importance of our optimization with larger

unroll factors. Since larger unroll factors for

the loops are needed for array reorganization

to fully utilize the memory bandwidth of the

platform. It is also important to note that

increasing the number of banks and size

sometimes gives a relatively small additional

benefit on average. The reason is that

complex data dependence limits inherent

memory parallelism. Such a case is also seen

for parallelizing compilers. A very large banks

does not always lead to great performance

improvement than a moderate size of SRAM.

Ⅶ. Related Work

Most previous work on CGRA [10, 11, 12]

does not explicitly consider the local memory

architecture or data placement. They assume

that all the required data is already present in

the local memory, and every load/store PE can

access that data whenever they need to. One

exception to this is [13], which assumes a

hierarchical memory architecture, where the

PEs are connected to a L0 local memory,

which connects to the external main memory

through an L1 local memory. Since both these

local memories are scratchpads, and therefore

statically scheduled, their main interest is in

improving the reuse between the L0 and L1

local memories. An early work [14] on CGRA

presents a methodology to evaluate memory

architectures for CGRA mapping; however, it

lacks a detailed mapping algorithm.

Optimizing locality if data accesses has

been the main focus of several previous

studies [15], see the references therein. Most

of these techniques use linear loop

trans­formations based on reuse vector space

[16, 17] and cost based [13, 18] abstractions.

The main limitation of these techniques is

inherent data dependences in the code and

imperfectly nested loop structures.

Many shared memory systems replicate

data to enable concurrent read access [19,

20]. This optimization is clearly required to

achieve any reasonable level of performance in

systems that do not implicitly replicate data

for concurrent read access, programmers

explicitly replicate the data [21]. Similarly,

renaming is designed to allow for concurrent

operations that have output and

anti-dependences but where there is no flow

of values between statements of a loop nest.

It has been used mainly for scalar variables as

for arrays the additional memory costs make it

very unprofitable for traditional high-end

architectures. Array data-flow analysis [22,

23] focuses on data dependence analysis that

is used to determine conditions for

parallelization.

The work [1] is to show how linear

memory access descriptor is used to analyze

and simplify array access patterns in a

program for more accurate compiler

 대한임베디드공학회논문지 제 6권 제 6호 2011년 12월 357

optimization. Unfortunately, it is designed to a

static analysis. In multimedia applications, such

techniques are not sufficiently powerful to deal

with all cases encountered in practice which is

frequently. To overcome this limitation, the

proposed approach is designed to a hybrid

analysis (profile based technique). Thus, it

provides the most accurate mem­ory access

pattern summary. Based on such memory

access pattern summary, we solve for an

array reorganization problem to fully utilize

memory parallelism. The proposed technique is

based on the application specific data access

patterns to optimize array partitioning and

mapping.

Ⅷ. Conclusion

In this paper, we described an algorithm for

deriving reorganized array data layouts in

multiple memory banks for array-based

computations, to facilitate high-bandwidth

parallel memory accesses in modern

architectures where multiple memory banks

can simultaneously feed one or more functional

units. By examining data dependences and

array subscript expressions, our algorithm

automatically derives application specific

layouts in multiple memories.

A key consideration when applying this

array reorganization algorithm is the feasibility

of reorganizing data in memory. Here we

considered loop nest computations, but when

expanding to full applications, either the

compiler must use the same layout throughout

the program. Depending on the architecture

and the application, such a re­organization

could be more costly than the performance

gain from increased memory parallelism.

A major focus of our current work is to

formulate this array reorganization optimization

as an interprocedural and global analysis

problem, and compare the results with

solutions that use efficient data reorganization.

By using our technique, the experimental

results show that the average improvement on

performance is 9.8% compared with the

existing method.

Acknowledgements

This research was supported by Basic

Science Research Program through the

National Research Foundation of Korea(NRF)

funded by the Ministry of Education, Science

and Technology (No. 2010-0024529 &

2011-0012522) and Sunchon National

University Research Fund in 2011.

References

[1] Yunheung Paek, Jay Hoeflinger, and David

Padua, "Simplification of array access patterns

for compiler optimizations", In PLDI’98,

pages60–71.

[2] Jean-Francois Collard and Daniel Lavery,

"Optimizations to prevent cache penalties for

the intel Itanium 2 processor", In Proceedings

of the CGO'03, 105–114.

[3] P. Grun, N. Dutt, and A. Nicolau, "Access

pattern based local memory customization for

low power embedded systems", In

Proceedings of the conference on DATE, 778

–784.

[4] M. Gupta and P. Banerjee, "Demonstration of

automatic data partitioning techniques for

parallelizing compilers on multicomputers",

IEEE Trans. Parallel Distrib. Syst., 3(2):179–

193, 1992.

[5] Hartej Singh, Guangming Lu, Eliseu Filho,

Rafael Maestre, Ming-Hau Lee, Fadi Kurdahi,

and Nader Bagherzadeh, "Morphosys: case

study of a reconfigurable computing system

targeting multimedia applications", In

Proceedings of DAC, 573–578, 2000.

[6] M. Wolfe, "More iteration space tiling", In

Proceedings of the ACM/IEEE conferenceon,

Supercomputing’89, 655–664.

[7] Nainesh Agarwal and Nikitas Dimopoulos,

358 Efficient Use of On-chip Memory through Profile-Driven Array Reorganization

"Dspstone benchmark of codel’s automated

clock gating platform", In Proceedings of the

IEEE VLSI, 508–509, 2007.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T.

M. Austin, T. Mudge, and R. B. Brown,

"Mibench: A free, commercially representative

embedded benchmark suite", In Proceedings of

the WWC-4. 2001.

[9] ICD-C compiler framework, University of

Dortmund, .http://www.icd.de/es/icd-c/

[10] Yoonjin Kim, Mary Kiemb, Chulsoo Park,

Jinyong Jung, and Kiyoung Choi, "Resource

sharing and pipelining in coarse-grained

reconfigurable architecture for

domain-specific optimization", In Proceedings

of DATE’05, 12–17.

[11] A. Hatanaka and N. Bagherzadeh, "A modulo

scheduling algorithm for a coarse-grain

re­configurable array template", In

Proceedings of the IPDPS’07, 1–8, 2007.

[12] Hyunchul Park, Kevin Fan, Manjunath

Kudlur, and Scott Mahlke, "Modulo graph

em­bedding: mapping applications onto

coarse-grained reconfigurable architectures",

In Proceedings of CASES’06, 136–146.

[13] Kathryn McKinley and Steve Carr,

"Improving data locality with loop

transformations", ACM Transactions on

Programming Languages and Systems, 18:

424–453, 1996.

[14] B. Mei, S. Vernalde, D. Verkest, H. De Man,

and R. Lauwereins, "Adres: An architecture

with tightly coupled vliw processor and

coarse grained reconfigurable matrix", In

Proceeding of Field Programmable Logic,

FPL’03, 61–70.

[15] Michael Joseph Wolfe, "High Performance

Compilers for Parallel Computing",

Addison-Wesley Longman Publishing Co.,

USA, 1995.

[16] Wei Li, "Compiling for numa parallel

machines", PhD thesis, Ithaca, NY,

USA,1993.

[17] Michael E. Wolf and Monica S. Lam, "A

data locality optimizing algorithm", In

Proceedings of the ACM SIGPLAN 1991, 30

–44.

[18] Michael E. Wolf, Dror E. Maydan, and

Ding-Kai Chen, "Combining loop

transformations considering caches and

scheduling", In MICRO29, 274–286, 1996.

[19] Daniel Edward Lenoski, "The design and

analysis of DASH: a scalable

directory-based multiprocessor", PhD thesis,

Stanford, CA, USA, 1992.

[20] Kai Li, "Shared virtual memory on loosely

coupled multiprocessors", PhD thesis, 1986.

[21] S. Lumetta, L. Murphy, X. Li, D. Culler, and

I. Khalil, "Decentralized optimal power

pricing: The development of a parallel

program", In IEEE Parallel and Distributed

Technology, 240–249, 1993.

[22] V. Balasundaram and K. Kennedy, "A

technique for summarizing data access and

its use in parallelism enhancing

transformations", In Proceedings of the ACM

SIGPLAN 1989, 41–53.

[23] Chau wen Tseng, "Compiler optimizations

for eliminating barrier synchronization",

ACM SIGPLAN, 144–155, 1995.

 대한임베디드공학회논문지 제 6권 제 6호 2011년 12월 359

저 자 소 개

Doosan Cho

2001 : B.S. degree in EE

from HUFS, Korea.

2003 : M.S. degree in EE

from Korea Univ. Korea.

2009 : Ph.D degree in EE

from Seoul National Univ.

Korea.

2009~2010 : research director at Recores

Inc.

2010~current : full time instructor of EE at

Sunchon National Univ. Korea.

Research Interests : embedded software, optimizing

compiler, low power design, system optimization,

MPSoC.

Email: dscho@sunchon.ac.kr

Jonghee Youn

2003 : B.S. degree in

EECS from Kyungpook

National Univ. Korea.

2011 : Ph.D degree in

EECS from Seoul National

Univ. Korea.

2011~current : Lecturing professor of CSE at

Gangneung Wonju National Univ. Korea.

Research Interests : embedded systems,

optimizing compiler, software optimizations,

MPSoC, GPGPU and computer architecture.

Email: jhyoun@gwnu.ac.kr

