On statistical properties of some dierence-based error variance estimators in nonparametric regression with a finite sample

  • Received : 2011.02.09
  • Accepted : 2011.04.28
  • Published : 2011.05.31

Abstract

We investigate some statistical properties of several dierence-based error variance estimators in nonparametric regression model. Most of existing dierence-based methods are developed under asymptotical properties. Our focus is on the exact form of mean and variance for the lag-k dierence-based estimator and the second-order dierence-based estimator in a nite sample size. Our approach can be extended to Tong's estimator (2005) and be helpful to obtain optimal k.

Keywords

References

  1. Carter, C. K. and Eagleson, G. K. (1992). A comparison of variance estimators in nonparametric regression. Journal of the Royal Statistical Society: Series B, 54, 773-780.
  2. Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonparametric regression-What is a reasonable choice? Journal of the Royal Statistical Society: Series B, 60, 751-764. https://doi.org/10.1111/1467-9868.00152
  3. Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika, 73, 625-633. https://doi.org/10.1093/biomet/73.3.625
  4. Hall, P. and Carroll, R. J. (1989). Variance function estimation in regression: The effect of estimating the mean. Journal of the Royal Statistical Society: Series B, 51, 3-14.
  5. Hall, P., Kay, J. W. and Titterinton, D. M. (1990). Asymptotically optimal difference-based estimator of variance in nonparametric regression. Biometrika, 77, 521-528. https://doi.org/10.1093/biomet/77.3.521
  6. Muller, U., Schick, A. and Wefelmeyer, W. (2003). Estimating the error variance in nonparametric regression by a covariate-matched U-statistic. Statistics, 37, 179-188. https://doi.org/10.1080/0233188031000078051
  7. Neumann, M. H. (1994). Fully data-driven nonparametric variance estimators. Statistics, 25, 189-212. https://doi.org/10.1080/02331889408802445
  8. Park, C. G. (2009). An estimator of the mean of the squared functions for a nonparametric regression. Journal of the Korean Data & Information Science Society, 20, 577-585.
  9. Park, C. G. (2008). A note on a Bayesian approach to the choice of wavelet basis functions at each resolution level. Journal of the Korean Data & Information Science Society,19, 1465-1476.
  10. Park, C. G., Kim, Y. H. and Yang, W. Y. (2004). Determinacy on a maximum resolution in wavelet series. Journal of the Korean Data & Information Science Society, 15, 467-476.
  11. Rice, J. A. (1984). Bandwidth choice for nonparametric regression. Annals of Statistics, 12, 1215-1220. https://doi.org/10.1214/aos/1176346788
  12. Tong, T. andWang, Y. (2005). Estimating residual variance in nonparametric regression using least squares. Biometrika, 92, 821-830. https://doi.org/10.1093/biomet/92.4.821
  13. Wahba, G. (1990). Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 59, SIAM, Philadelphia.