DOI QR코드

DOI QR Code

Numerical Analysis on Performance Improvement for Wind Blade by the Groove

Groove를 활용한 풍력블레이드 성능향상을 위한 수치적 연구

  • 홍철현 (부산대학교 기계설계인력양성센터) ;
  • 서성호 (한국과학기술정보연구원)
  • Received : 2011.04.26
  • Accepted : 2011.05.24
  • Published : 2011.05.31

Abstract

This study, a basic study to improve aerodynamic characteristic of a wind blade, explored through CFD how much the lift to drag ratio improves according to the shape of groove formed on the surface of airfoil NACA0015. This study found out that the ratio improves by 8.7% when the ratio between boundary layer(${\delta}$) and the depth of groove(h), the ratio between the depth of groove(h) and the width of groove(d) and the ratio between the length(p) from one groove to the other and the width of groove are 1.1, 0.1 and 1.2 respectively. The number of grooves is two. It was also confirmed that the improvement of the lift to drag ratio is maintained after certain angle of attack.

본 연구는 풍력블레이드의 공력특성 향상을 위한 기초연구로서, 익형의 표면에 형성된 groove의 형상에 따른 양항비의 개선정도를 전산해석을 통해 분석하였다. 본 연구의 계산 범위에서 경계층(${\delta}$)과 groove 깊이(h)의 비는 1.1, groove 깊이(h)와 폭(d)의 비는 0.1, groove 사이의 거리(p)와 폭(d)의 비는 1.2, groove 수는 2개의 경우에서 양항비가 8.7% 향상된 결과를 보였다. Groove에 의한 양항비의 개선정도가 특정 받음각 이후에서도 지속됨을 확인하였다.

Keywords

References

  1. 창원대-KAIST 협력사업 결과보고서, 풍력 터빈 블레이드 구조해석용 CFD 풍압데이터 산출, 한국과학연구원, 2011.
  2. 김범석, 김만응, 이영호, "CFD에 의한 2D 에어포일 공력특성 및 3D 풍력터빈 성능예측", 대한기계학회논문집 B권, 제32권, 제7호, pp. 549-557, 2008. https://doi.org/10.3795/KSME-B.2008.32.7.549
  3. B. Kamoun, D. Afungchui and A. Chauvin, "A wind turbine blade profile analysis code based on the singularities method," Renewable Energy, vol. 30, pp. 339-352, 2005. https://doi.org/10.1016/j.renene.2004.05.004
  4. P. Giguere and M. S. Selig, "New airfoils for small horizontal axis wind turbines," Trans. ASME J. of Solar Energy Engineering, vol. 120, pp. 108-114, 1998. https://doi.org/10.1115/1.2888052
  5. 신지영, 손영석, 차득근, 이철균, 황이철,"수직축 풍력터빈 블레이드의 공기역학적 특성," 한국마린엔지니어링학회지, 제30권, 제8호, pp. 877-884, 2006.
  6. Tetsuya Kogaki, Hikaru Matsumiya, Kaori Kieda, Naofumi Yoshimizu And Yuusuke Yamamoto, "Performance Improvement Of Airfoils For Wind Turbines By The Modified Vortex Generator," 2004 European Wind Energy Conference, http://www.2004ewec.info/, 2004.
  7. Tyler W. Robarge and Aaron M. Stark, "Design considerations for using indented surface treatments to control boundary layer", AIAA 2004-425.
  8. Langtry, PR. B. and Menter, F. R., "Transitional modeling for general CFD applications in aeronautics", AIAA 2005-522.
  9. Sheldahl, R. E. and Klimas, P. C., "Aerodynamic Characteristics of seven airfoil sections through 180 degrees angle of attack for Use in aerodynamic analysis of vertical axis wind turbines", http://www. cyberiad.net/library/airfoils/ foildata/, 1981.
  10. 황병선, 최신 풍력터빈의 이해, 도서출판 아진, 2009.
  11. Jin Choi, Woo-Pyung Jeon, and Heacheon Choi, "Mechanism of drag reduction on a sphere," Physics of Fluid 18, 041702, 2006. https://doi.org/10.1063/1.2191848

Cited by

  1. A study on lightweight design for wind turbine rotor shaft vol.38, pp.4, 2014, https://doi.org/10.5916/jkosme.2014.38.4.389
  2. Numerical Study on Aerodynamic Characteristics of NACA0015 vol.302, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/amm.302.640
  3. 탄성 플랩을 갖는 2차원 날개 단면 공력 특성 전산해석 vol.2, pp.1, 2014, https://doi.org/10.3795/ksme-c.2014.2.1.039