DOI QR코드

DOI QR Code

Physical Modeling of SiC Power Diodes with Empirical Approximation

  • Hernandez, Leobardo (Departamento de Ingenieria en Comunicaciones y Electronica del I.P.N.) ;
  • Claudio, Abraham (Centro Nacional de Investigacion y Desarrollo Tecnologico (CENIDET) Cuernavaca) ;
  • Rodriguez, Marco A. (Universidad Autonoma del Carmen (UNACAR)) ;
  • Ponce, Mario (Centro Nacional de Investigacion y Desarrollo Tecnologico (CENIDET) Cuernavaca) ;
  • Tapia, Alejandro (Departamento de Ingenieria en Comunicaciones y Electronica del I.P.N.)
  • Received : 2010.12.23
  • Published : 2011.05.20

Abstract

This article presents the development of a model for SiC power diodes based on the physics of the semiconductor. The model is able to simulate the behavior of the dynamics of the charges in the N- region based on the stored charge inside the SiC power diode, depending on the working regime of the device (turn-on, on-state, and turn-off). The optimal individual calculation of the ambipolar diffusion length for every phase of commutation allows for solving the ambipolar diffusion equation (ADE) using a very simple approach. By means of this methodology development a set of differential equations that models the main physical phenomena associated with the semiconductor power device are obtained. The model is developed in Pspice with acceptable simulation times and without convergence problems during its implementation.

Keywords

References

  1. J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, "An assessment of wide bandgap semiconductors for power devices," IEEE Trans. Power Electron., Vol. 18, No.3, pp. 907-914, May 2003. https://doi.org/10.1109/TPEL.2003.810840
  2. M. E. Levinshteina, P. A. Ivanova, M. S. Boltovetsb, V. A. Krivutsab, J. W. Palmourc, M. K. Dasc, and Brett A. Hullc, "High-temperature (up to 773 K) operation of 6-kV 4H-SiC junction diodes," Solid-State Electronics, Vol. 49, No.7, pp. 1228-1232, Jul. 2005. https://doi.org/10.1016/j.sse.2005.04.020
  3. M. Holza, G. Hultschb, T. Scherga, and R. Ruppa, "Reliability considerations for recent Infineon SiC diode releases," Microelectronics Reliability, Vol. 47, No. 9-11, pp. 1741-1745, Sep./Nov. 2007. https://doi.org/10.1016/j.microrel.2007.07.031
  4. R. Singh, S.-H. Ryu, D. C. Capell, and J. W. Palmour, "High temperature SiC trench gate p-IGBTs," IEEE Trans. Electron Devices, Vol. 50, No. 3, pp. 774-784, May 2003. https://doi.org/10.1109/TED.2003.811388
  5. J. H. Zhao, L. Fursin, L. Jiao, X. Li, and T. Burke, "Demonstration of 1789 V, $6.68m{\Omega}-cm2$ 4H-SiC merged- PiN-Schottky diodes," Electron Devices Letters, Vol. 40, No. 6, Mar. 2004.
  6. Y. Sugawara, D. Takayama, K. Asano, A. Agarwal, S. Ryu, J. Palmour, and S. Ogata, "12.7KV Ultra High Voltage SiC Commutated Gate Turnoff Thyristor:SiCGT," Symposium on Power Semiconductor Devices & ICs, pp. 365-368, 2004.
  7. T. Kimoto, H. Kawano, and J. Suda, "1330 V, 67 $m{\Omega}cm2$ 4H-SiC (0001) RESURF MOSFET," Electron Devices Letter, Vol. 26, No.9, pp. 649-651, Sep. 2005. https://doi.org/10.1109/LED.2005.854371
  8. P. A. Ivanova, M. E. Levinshteina, J. W. Palmourb, M. K. Dasb, and B. A. Hull, "High power 4H-SiC P-i-N diodes (10 kV class) with record high carrier lifetime," Solid-State Electronics, Vol. 50, No. 7-8, pp. 1368-1370. Jul./Aug. 2006. https://doi.org/10.1016/j.sse.2006.06.018
  9. S.-H. Ryu, S. Krishnaswami, B. Hull, J. Richmond, A. Agarwal, and A. Hefner, "10 kV, 5A 4H-SiC Power DMOSFET", International Symposium on Power Semiconductor Devices & ICs, pp. 1-4, 2006.
  10. J. Zhang, P. Alexandrov, T. Burke, J. H. Zhao, "4H-SiC Power Bipolar Junction Transistor With a Very Low Specific ON-Resistance of 2.9 $m{\Omega}$ cm2," Electron Devices Letter, Vol. 27, No. 5, pp. 368-370, May 2006. https://doi.org/10.1109/LED.2006.873370
  11. M. Su, K. Sheng, Y. Li, Y. Zhang, J. Wu, J. H. Zhao, J. Zhang, and L. X. Li, "430-V $12.4-m{\Omega}$ cm2 Normally OFF 4H-SiC Lateral JFET," Electron Devices Letter, Vol. 27, No. 10, pp. 834-836, Oct. 2006. https://doi.org/10.1109/LED.2006.883057
  12. R. Kraus and H. J. Mattausch, "Status and Trend of Power Semiconductor Device Models for Circuit Simulation," IEEE Transaction Power Electronics, Vol. 13, No. 6, pp. 452-465, May 1998. https://doi.org/10.1109/63.668107
  13. T. McNutt, A. Hefner, A. Mantootha, D. Berningb, and R. Singhb "Compact models for silicon carbide power devices," Solid-State Electronics, Vol. 48, No. 10-11 pp. 1757-1762, Oct./Nov. 2004. https://doi.org/10.1016/j.sse.2004.05.059
  14. M. E. Levinshtein , T. T. Mnatsakanov, P. A. Ivanov, R. Singh, J. W. Palmour, and S. N. Yurkov "Steady-state and transient characteristics of 10 kV 4H-SiC diodes", Solid-State Electronics, Vol. 48, No. 5, pp. 807-811, May 2004. https://doi.org/10.1016/j.sse.2003.11.001
  15. T. R. McNutt, A. R. Hefner Jr., H. A. Mantootha, J. L. Dulierec, D. W. Berningb, and R. Singh, "Physics-based modeling and characterization for silicon carbide power diodes," Solid-State Electronics, Vol. 50, No. 3, pp. 388-398, Mar. 2006. https://doi.org/10.1016/j.sse.2006.01.013
  16. M. Loulou, M. Abdelkrim, R. Gharbi, M. Fathallah, C. F. Pirri, E. Tresso, and A. Tartaglia "Modelling and analysis of a-SiC:H p-i-n photodetectors: Effect of hydrogen dilution on dynamic model," Solid-State Electronics, Vol. 51, No. 7, pp. 1067-1072, Jul. 2007. https://doi.org/10.1016/j.sse.2007.05.012
  17. S. Sze, Physics of Semiconductor Devices, John Wiley & Sons, 1981.
  18. D. A. Neamen; Semiconductor Physics and Devices. University of New Mexico, USA. McGraw Hill, 2003.
  19. A. S. Grove, Physics and Technology of Semiconductor Devices, Wiley, pp. 184-185, 1967.
  20. A. T. Bryant, L. Lu, E. Santi, P. R. Palmer, and J. L. Hudgins, "Physical modeling of fast p-i-n diodes with carrier lifetime zoning, part I: Device model," IEEE Transaction Power Electronics, Vol. 23, No. 1, pp. 195-196, Jan. 2008.

Cited by

  1. Numerical analysis of reverse recovery characteristics of 4H-SiC p+–n−–n+ power diode with injection conditions vol.118, pp.4, 2015, https://doi.org/10.1007/s00339-014-8894-1