DOI QR코드

DOI QR Code

Flavonoid Glycosylation Using Microbial-produced Unusual Sugar

미생물 유래 특이당을 이용한 플라보노이드 당화반응

  • Oh, Tae-Jin (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Sohng, Jae-Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University)
  • 오태진 (선문대학교 제약공학과 생체분자재설계연구소) ;
  • 송재경 (선문대학교 제약공학과 생체분자재설계연구소)
  • Received : 2011.03.24
  • Accepted : 2011.04.23
  • Published : 2011.04.30

Abstract

Glycosylation is a key mechanism in determining diversity of natural products, and influencing their bioactivities. This approach requires a core set of glycosyltransferase that synthesizes the diverse sugar structures observed in nature. Recently, the researchers have begun to alter the sugar moiety and glycosylation patterns of natural products both in vivo E. coli system and in vitro for their glycodiversification. This review highlights new glycosylation tools using microbialproduced deoxysugar and a flexible glycosyltransferase on natural plant-flavonoids to generate novel glycoforms with useful biological activity.

Keywords

References

  1. Bolen, D. W. (2001) Protein stabilization by naturally occurring osmolytes. Meth. Mol. Biol. 168: 17-36.
  2. Pilobello, K. T. and L. K. Mahal (2007) Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr. Opin. Chem. Biol. 11: 300-305. https://doi.org/10.1016/j.cbpa.2007.05.002
  3. Luzhetskyy, A., C. Mendez, J. A. Salas, and A. Bechthold (2008) Glycosyltransferases, important tools for drug design. Curr. Top. Med. Chem. 8: 680-709. https://doi.org/10.2174/156802608784221514
  4. White-Phillip, J., C. J. Thibodeaux, and H. W. Liu (2009) Enzymatic synthesis of TDP-deoxysugars. Methods Enzymol. 459: 521-544. https://doi.org/10.1016/S0076-6879(09)04621-7
  5. Bongat, A. F. and A. V. Demchenko (2007) Recent trends in the synthesis of O-glycosides of 2-amino-2-deoxysugars. Carbohydr. Res. 342: 374-406. https://doi.org/10.1016/j.carres.2006.10.021
  6. Davies, G. J., T. M. Gloster, and B. Henrissat (2005) Recent structural insights into the expanding world of carbohydrateactive enzymes. Curr. Opin. Struct. Biol. 15: 637-645. https://doi.org/10.1016/j.sbi.2005.10.008
  7. Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucl. Acids Res. 37: D233-D238. https://doi.org/10.1093/nar/gkn663
  8. Jank, T., T. Giesemann, and K. Aktories (2007) Rho-glucosylating Clostridium difficile toxins A and B: insights into structure and function. Glycobiology 17: 15R-22R. https://doi.org/10.1093/glycob/cwm004
  9. Mittler, M., A. Bechthold, and G. E. Schulz (2007) Structure and action of the C-C bond-forming glycosyltransferase UrdGT2 involved in the biosynthesis of the antibiotic urdamycin. J. Mol. Biol. 372: 67-76. https://doi.org/10.1016/j.jmb.2007.06.005
  10. Lim, E.-K. and D. J. Bowles (2004) A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J. 23: 2915-2922. https://doi.org/10.1038/sj.emboj.7600295
  11. Mendez, C., A. Luzhetskyy, A. Bechthold, and J. Salas (2008) Deoxysugars in bioactive natural products: development of derivatives by altering the sugar pattern. Curr. Med. Chem. 8: 710-724. https://doi.org/10.2174/156802608784221532
  12. Karki, S., H. G. Yoo, S. Y. Kwon, J. W. Suh, and H. J. Kwon (2010) Cloning and in vitro characterization of dTDP-6-deoxy-L-talose biosynthetic genes from Kitasatospora kifunensis featuring the dTDP-6-deoxy-L-lyxo-4-hexulose reductase that synthesizes dTDP-6-deoxy-L-talose. Carbohydr. Res. 345: 1958-1962. https://doi.org/10.1016/j.carres.2010.07.004
  13. Wu, J. W., L. C. Lin, and T. H. Tsai (2009) Drug-drug interactions of silymarin on the perspective of pharmacokinetics. J. Ethnopharmacol. 121: 185-193. https://doi.org/10.1016/j.jep.2008.10.036
  14. Weymouth-Wilson, A. C. (1997) The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14: 99-110. https://doi.org/10.1039/np9971400099
  15. Oh, T. J., S. J. Mo, Y. J. Yoon, and J. K. Sohng (2007) Discovery and molecular engineering of sugar-containing natural product biosynthetic pathway in actinomycetes. J. Microbiol. Biotechnol. 17: 1909-1921.
  16. Pageni, B. B., T. J. Oh, K. Liou, Y. J. Yoon, and J. K. Sohng (2008) Genetically engineered biosynthesis of macrolide derivatives including 4-amino-4,6-dideoxy-L-glucose from Streptomyces venezuelae YJ003-OTBP3. J. Microbiol. Biotechnol. 18: 88-94.
  17. Pageni, B. B., T. J. Oh, H. C. Lee, and J. K. Sohng (2008) Metabolic engineering of noviose: heterologous expression of novWUS and generation of a new hybrid antibiotic, noviosylated 10-deoxymethynolide/narbonolide, from Streptomyces venezuelae YJ003-OTBP1. Biotechnol. Lett. 30: 1609-1615. https://doi.org/10.1007/s10529-008-9733-2
  18. Pageni, B. B., T. J. Oh, J. C. Yoo, and J. K. Sohng (2008) Functional characterization of orf6 and orf9 genes involved in the biosynthesis of L-oleandrose from Streptomyces antibioticus Tu99. Biotechnol. Bioproc. Eng. 13: 752-757. https://doi.org/10.1007/s12257-008-0128-y
  19. Pageni, B. B., T. J. Oh, and J. K. Sohng (2009) Novel desosaminyl derivatives of dihydrochalcomycin from a genetically engineered strain of Streptomyces sp. Biotechnol. Lett. 31: 1759-1768. https://doi.org/10.1007/s10529-009-0074-6
  20. Madduri, K., J. Kennedy, G. Rivola, A. Inventi-Solari, S. Filippini, G. Zanuso, A. L. Colombo, K. M. Gewain, J. L. Occi, D. J. MacNeil, and C. R. Hutchinson (1998) Production of the antitumor drug epirubicin (4'-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nat. Biotechnol. 16: 69-74. https://doi.org/10.1038/nbt0198-69
  21. Griffith, B. R., J. M. Langenhan, and J. S. Thorson (2005) 'Sweetening' natural products via glycorandomization. Curr. Opin. Biotechnol. 16: 622-630. https://doi.org/10.1016/j.copbio.2005.10.002
  22. Oh, J., S. G. Lee, B. G. Kim, J. K. Sohng, K. Liou, and H. C. Lee (2003) One-pot enzymatic production of dTDP-4-keto-6-deoxy- D-glucose from dTMP and glucose-1-phosphate. Biotechnol. Bioeng. 84: 452-458. https://doi.org/10.1002/bit.10789
  23. Lee, H. C., S. D. Lee, J. K. Sohng, and K. Liou (2004) One-pot enzymatic synthesis of UDP-D-glucose from UMP and glucose- 1-phsphate using an ATP regeneration system. J. Biochem. Mol. Biol. 37: 503-506. https://doi.org/10.5483/BMBRep.2004.37.4.503
  24. Chung, Y. S., D. H. Kim, W. M. Seo, H. C. Lee, K. Liou, J. K. Sohng, and T. J. Oh (2007) Enzymatic synthesis of dTDP-4-amino- 4,6-dideoxy-D-glucose using GerB (dTDP-4-keto-6-deoxy-Dglucose aminotransferase). Carbohydr. Res. 342: 1412-1418. https://doi.org/10.1016/j.carres.2007.04.007
  25. Oh, T. J., D. H. Kim, S. Y. Kang, T. Yamaguchi, and J. K. Sohng (2011) Enzymatic synthesis of vancomycin derivatives using galactosyltransferase and sialyltransferase. J. Antbiot. 64: 103-109. https://doi.org/10.1038/ja.2010.131
  26. Kao, C. L., S. A. Borisova, H. J. Kim, and H. W. Liu (2006) Linear aglycones are the substrates for glycosyltransferase DesVII in methymycin biosynthesis: analysis and implications. J. Am. Chem. Soc. 128: 5606-5607. https://doi.org/10.1021/ja058433v
  27. Hoffmeister, D., G. Drager, K. Ichinose, J. Rohr, and A. Bechthold (2003) The C-glycosyltransferase UrdGT2 is unselective toward d- and I-configured nucleotide-bound rhodinoses. J. Am. Chem. Soc. 125: 4678-4679. https://doi.org/10.1021/ja029645k
  28. Salas, J. A. and C. Méndez (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol. 15: 219-232. https://doi.org/10.1016/j.tim.2007.03.004
  29. Luzhetskyy, A., H. Weiss, A. Charge, E. Welle, A. Linnenbrink, A. Vente, and A. Bechthold (2007) A strategy for cloning glycosyltransferase genes involved in natural product biosynthesis. Appl. Microbiol. Biotechnol. 75: 1367-1375. https://doi.org/10.1007/s00253-007-0950-8
  30. Zhang, C., B. R. Griffith, Q. Fu, C. Albermann, X. Fu, I. K. Lee, L. Li, and J. S. Thorson (2006) Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313: 1291-1294. https://doi.org/10.1126/science.1130028
  31. Ahn, B. C., B. G. Kim, Y. M. Jeon, E. J. Lee, Y. Lim, and J. H. Ahn (2009) Formation of flavone di-O-glucosides using a glycosyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 19: 387-390. https://doi.org/10.4014/jmb.0802.116
  32. Miyahisa, I., N. Funa, Y. Ohnishi, S. Martens, T. Moriguchi, and S. Horinouchi (2006) Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Appl. Microbiol. Biotechnol. 71: 53-58. https://doi.org/10.1007/s00253-005-0116-5
  33. Katsuyama, Y., N. Funa, I. Miyahisa, and S. Horinouchi (2007) Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Biol. 14: 613-621. https://doi.org/10.1016/j.chembiol.2007.05.004
  34. Simhada, D., N. P. Kurumbang, H. C. Lee, and J. K. Sohng (2010) Exploration of glycosylated flavonoids from metabolically engineered E. coli. Biotech. Bioprocess Eng. 15: 754-760. https://doi.org/10.1007/s12257-010-0012-4
  35. Simkhada, D., E. Kim, H. C. Lee, and J. K. Sohng (2010) Metabolic engineering of Escherichia coli for the biological synthesis of 7-O-xylosyl naringenin. Mol. Cells 28: 397-401. https://doi.org/10.1007/s10059-009-0135-7
  36. Simkhada, D., H. C. Lee, and J. K. Sohng (2010) Genetic engineering approach for the production of rhamnosyl and allosyl flavonoids from Escherichia coli. Biotechnol. Bioeng. 107: 154-162. https://doi.org/10.1002/bit.22782