DOI QR코드

DOI QR Code

Effect of Annealing Temperature after Deposition on the Structural, Electrical and Optical Properties of In2O3 Films

증착 후 열처리 온도에 따른 In2O3 박막의 구조적, 전기적, 광학적 특성 변화

  • Lee, Y.J. (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, H.M. (School of Materials Science and Engineering, University of Ulsan) ;
  • Heo, S.B. (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Y.S. (New Optics, R&D Team) ;
  • Chae, J.H. (New Optics, R&D Team) ;
  • Kong, Y.M. (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
  • 이영진 (울산대학교 첨단소재공학부) ;
  • 이학민 (울산대학교 첨단소재공학부) ;
  • 허성보 (울산대학교 첨단소재공학부) ;
  • 김유성 (뉴옵틱스 기술연구소) ;
  • 채주현 (뉴옵틱스 기술연구소) ;
  • 공영민 (울산대학교 첨단소재공학부) ;
  • 김대일 (울산대학교 첨단소재공학부)
  • Received : 2011.09.27
  • Accepted : 2011.10.20
  • Published : 2011.11.30

Abstract

We have investigated the structural, electrical and optical properties of $In_2O_3$ thin films deposited by RF magnetron sputtering and then annealed at $150^{\circ}C$ and $300^{\circ}C$ in vacuum. The structural and electrical properties are strongly related to annealing temperature. All the annealed $In_2O_3$ films are grown as a hexagonal wurtzite phase and the largest grain size is observed in the films annealed at $300^{\circ}C$. The sheet resistance decreases with a increase in annealing temperature and $In_2O_3$ film annealed at $300^{\circ}C$ shows the lowest sheet resistance of $174{\Omega}/{\Box}$. The optical transmittance of $In_2O_3$ films in a visible wavelength region also depends on the annealing temperature. The films annealed at $300^{\circ}C$ show higher transmittance of 76% than those of the films prepared in this study.

Keywords

References

  1. S. B. Heo, H. M. Lee, C. W. Jung, S. K. Kim, Y. J. Lee, Y. S. Kim, Y. Z. You and D. Kim : J. Kor. Soc. Heat Treat, 24 (2011) 31.
  2. J. H. Kwak and S. H. Cho : J. Korean Vacuum Soc, 19 (2010) 224. https://doi.org/10.5757/JKVS.2010.19.3.224
  3. Daeil Kim : J. Kor. Soc. Heat Treat, 24 (2011) 140.
  4. F. O. Adurodija, L. Semple and R. Bruning : Thin Solid Films, 492 (2005) 153. https://doi.org/10.1016/j.tsf.2005.07.114
  5. V. Korobov, M. Leibovitch and Y. Shapira : Appl. Phys. Lett, 65 (1994) 2290. https://doi.org/10.1063/1.112721
  6. V. Senthilkumar and P. Vickraman : Curr. Appl. Phys, 10 (2010) 880. https://doi.org/10.1016/j.cap.2009.10.014
  7. H. Morikawa and M. Fujita : Thin Solid Films, 359 (2000) 61. https://doi.org/10.1016/S0040-6090(99)00749-X
  8. B. R. Krishna, T. Subramanyam, B. Srinivasulu and S. Uthanna : Opt. Mater, 15 (2000) 217. https://doi.org/10.1016/S0925-3467(00)00041-0
  9. G. Haacke : J. Appl. Phys, 47 (1976) 4086. https://doi.org/10.1063/1.323240
  10. B. D. Cullity : Elements of X-ray diffractions, Addition-Wesley, Reading, MA, (1978) 102-121.
  11. Daeil Kim : Appl. Surf. Sci, 257 (2010) 704. https://doi.org/10.1016/j.apsusc.2010.07.038