A Study on the high-flux MBR system using PTFE flat membrane and coagulant(Alum) for removal of phosphorus

PTFE재질의 평판형 분리막과 인제거를 위해 Alum주입을 적용한 고플럭스 MBR시스템에 관한 연구

  • 이의종 (성균관대학교 건설환경시스템공학과 환경공학연구실) ;
  • 김관엽 (성균관대학교 건설환경시스템공학과 환경공학연구실) ;
  • 권진섭 (성균관대학교 건설환경시스템공학과 환경공학연구실) ;
  • 김영훈 (성균관대학교 건설환경시스템공학과 환경공학연구실) ;
  • 이용수 (성균관대학교 건설환경시스템공학과 환경공학연구실) ;
  • 이창하 (성균관대학교 건설환경시스템공학과 환경공학연구실) ;
  • 전민정 (성균관대학교 건설환경시스템공학과 환경공학연구실) ;
  • 김형수 (성균관대학교 건설환경시스템공학과 환경공학연구실) ;
  • 김정래 (효성에바라엔지니어링(주)) ;
  • 정진호 (성균관대학교 건설환경시스템공학과 환경공학연구실)
  • Published : 2011.02.15

Abstract

Even though MBR processes have many advantages such as high quality effluents, a small footprint and convenience for operation compared to conventional activated sludge processes, there are some shortcomings in terms of the cost and potential fouling incident that keeps MBR (Membrane bioreactor) processes from being widely applied. To reduce these problems, PTFE (Polytetrafluoroethylene) flat sheet membranes that have excellent permeability and durability were tested instead of PVDF (Polyvinylidene fluoride) membrane which is being used widely in water treatment. Low concentration of sodium hydroxide (NaOH) was also added into the membrane modules in order to prevent the membrane fouling as well as to provide the alkalinity. With conditions mentioned above, a pilot-scale MBR system based on the MLE (Modified Ludzack Ettinger) process was operated at flux of 40 $L/m^{2}/hr$ and over 15,000 mg/L MLSS concentration for about 8 months. And coagulant(alum) was added into the membrane tank to remove phosphorus. Although the more coagulant is added the more effectively phosphorus is removed, that can lead to fouling for a long operation(Ronseca et al.,2009). By the way there is a research that fouling grow up after stopping injection of coagulant(Holbrook, 2004). Stable operation of MBR systems was achieved without major chemical cleaning and the effluent quality was found to be good enough to comply with the treated waste water quality regulations of the Korea.

Keywords

References

  1. 김관엽, 김지훈, 이용수, 박재홍, 김형수, (2007) 침지형 MBR 공정에 적용한 PTFE 분리막의 성능 및 주기적인 화학역세에 의한 고플럭스 운전성 평가, 한국막학회, 추계추계학술발표회 논문집, pp. 295-299.
  2. 윤성훈, 김형수, (1999) 침적형 막분리 공정에서 플럭스에 따른 막오염 속도, 대한환경공학회지, 21(9) pp. 1707-1716.
  3. 최재훈, 김형수 (2008). "침지형 막 분리 활성슬러지법에서 막의 재질 및 구조가 파울링에 미치는 영향." 대한환경공학회지 30(1): 31-36.
  4. 한승우, 강임석, 응집공정을 이용한 하수처리수 중의 인 제거 Mechanism, 대한환경공학회지, 32(8), pp. 774-779.
  5. A.L. Lim, R. Bai, (2003) Membrane fouling and cleaning in microfiltration of activated sludge wastewater, Journal of Membrane Science 216, pp. 279-290. https://doi.org/10.1016/S0376-7388(03)00083-8
  6. Bai, R. and H. F. Leow, (2002) Microfiltration of activated sludge wastewater-the effect of system operation parameters, Separation and Purification Technology, 29(2), pp.189-198. https://doi.org/10.1016/S1383-5866(02)00075-8
  7. B.Q. Liao, D.M. Bagley, H.E. Kraemer, G.G. Leppard, S.N. Liss, (2004) A review of biofouling and its control in membrane separation bioreactors, Water Environ. Res., 76, pp. 425-436. https://doi.org/10.2175/106143004X151527
  8. Chang, S. and A. G. Fane, (2001) The effect of fibre diameter on filtration and flux distribution - relevance to submerged hollow fibre modules, Journal of Membrane Science 184(2): 221-231. https://doi.org/10.1016/S0376-7388(00)00626-8
  9. Evenblij, H., S. Geilvoet, et al., (2005). "Filtration characterisation for assessing MBR performance: three cases compared." Desalination 178(1-3):115-124. https://doi.org/10.1016/j.desal.2005.02.005
  10. Fonseca, A. D., Daigger, G. T., Johnson, N. A., Lynch, D., Canham, B. A., Rumke, M., Broderick, T. A., (2009) Greenfield Start-Up of the Broad Run Water Reclamation Facility. Proceedings of the 82nd Annual Water Environment Federation Technical Exposition and Conference [CD-ROM], Orlando, Florida, Oct. 10-14; Water Environment Federation: Alexandria, Virginia
  11. Geng Z., E.R. Hall E.R. and Berube P.R., (2007) Membrane fouling mechanisms of a membrane enhanced biological phosphorus removal process, Journal of Membrane Science 296(1-2), pp. 93-101. https://doi.org/10.1016/j.memsci.2007.03.019
  12. Holbrook, R. D., Higgins, M. J., Murthy, S. N., Fonseca, A. D., Fleischer, E. J., Daigger, G. T., Grizzard, T. J., Love, N. G., Novak, J. T., (2004) Effect of Alum Addition on the Performance of Submerged Membranes for Wastewater Treatment. Water Environ. Res., 76, pp. 2699-2702.
  13. Judd, S., (2006) The MBR book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment, Elsevier.
  14. Le-Clech, P., V. Chen, et al., (2006) Fouling in membrane bioreactors used in wastewater treatment, Journal of Membrane Science, 284(1-2), pp. 17-53. https://doi.org/10.1016/j.memsci.2006.08.019
  15. Meyerhof, O., (1917) Untersuchungen Uber Den Atmungsvorgang Nitri fizierenden Bakterien, Pflugers Arch. Ges. Physiol, pp. 166,240 .
  16. Nagaoka H, Ueda S and Miya A., (1996) Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Sci. Technol, 34, pp. 165-172.
  17. N.F Gray, (1989) Biology of Wastewater Treatment, Oxford University Press, New York, pp. 374-396
  18. Shammas, N. K., (1986). Interactions of Temperature, pH, and Biomass on the Nitrification Process Journal (Water Pollution Control Federation) 58(1), pp. 52-59.
  19. Smith, P. J., S. Vigneswaran, et al., (2005) Design of a generic control system for optimising back flush durations in a submerged membrane hybrid reactor, Journal of Membrane Science, 255(1-2), pp. 99-106. https://doi.org/10.1016/j.memsci.2005.01.026
  20. Yigit, N. O., G. Civelekoglu, et al., (2009) Effects of various backwash scenarios on membrane fouling in a membrane bioreactor, Desalination, 237(1-3), pp. 346-356.emoval rates https://doi.org/10.1016/j.desal.2008.01.026