DOI QR코드

DOI QR Code

Anode Properties of Sn-Ni Nanoparticle Composites for Rechargeable Lithium Batteries

주석-니켈 나노입자 복합체의 리튬 이차전지 음전극 특성

  • Kim, Kwang-Man (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kang, Kun-Young (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Choi, Min-Gyu (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee, Young-Gi (Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI))
  • 김광만 (한국전자통신연구원 융합부품소재부문 전력제어소자팀) ;
  • 강근영 (한국전자통신연구원 융합부품소재부문 전력제어소자팀) ;
  • 최민규 (한국전자통신연구원 융합부품소재부문 전력제어소자팀) ;
  • 이영기 (한국전자통신연구원 융합부품소재부문 전력제어소자팀)
  • Published : 2011.12.01

Abstract

Nanocomposite anodes for rechargeable lithium battery are prepared by mixing tin and nickel nanoparticles via wet method and their electrochemical properties are examined. The Sn-Ni nanocomposite anode shows a maximum discharge capacity of 700 mAh $g^{-1}$ at the first cycle but very poor cycle performance. This means that the electrode porosity and the Ni component formed by the simple mixing of nanoparticles no longer play the role of buffering the volume expansion/contraction of Sn component during charge-discharge. To solve the cycle performance problem, a novel nanostructured Sn-Ni anode should be designed and tested.

주석과 니켈 나노입자를 함량별로 혼합하여 습식법으로 리튬 이차전지용 복합체 음전극을 제조하고 그 물성과 전기화학적 특성을 조사하였다. 이 음전극은 초기 방전시 최대 700 mAh $g^{-1}$의 우수한 방전용량을 나타내었지만 사이클 특성은 심각한 열화를 보였다. 이것은 나노입자간 단순혼합만으로는 전극판의 기공성과 Ni 성분이 충방전에 따르는 Sn성분의 팽창/수축에 대한 기계적 완충제 역할이 충분하지 않았기 때문이며, 차후 이를 보완하는 나노구조체 Sn-Ni 음전극의 설계와 시험이 필요하다.

Keywords

References

  1. Winter, M. and Besenhard, J. O., "Electrochemical Lithiation of Tin and Tin-Based Intermetallics and Composites," Electrochim. Acta, 45, 31-50(1999). https://doi.org/10.1016/S0013-4686(99)00191-7
  2. Crosnier, O., Brousse, T., Devaux, X., Fragnaud, P. and Schleich, D.M., "New Anode Systems for Lithium Ion Cells," J. Power Sources, 94, 169-174(2001). https://doi.org/10.1016/S0378-7753(00)00599-1
  3. Mukaibo, H., Sumi, T., Yokoshima, T., Momma, T. and Osaka, T., "Electrodeposited Sn-Ni Alloy Film as a High Capacity Anode Material for Lithium-ion Secondary Batteries", Electrochem. Solid- State Lett., 6, A218-A220(2003). https://doi.org/10.1149/1.1602331
  4. Mukaibo, H., Momma, T., Mohamedi, M. and Osaka, T., "Structural and Morphological Modifications of a Nanosized 62 Atom Percent Sn-Ni Thin Film Anode during Reaction with Lithium," J. Electrochem. Soc., 152, A560-A565(2005). https://doi.org/10.1149/1.1856913
  5. Mukaibo, H., Momma, T. and Osaka, T., "Changes of Electro- Deposited Sn-Ni Alloy Thin Film for Lithium ion Battery Anodes during Charge discharge Cycling," J. Power Sources, 146, 457-463(2005). https://doi.org/10.1016/j.jpowsour.2005.03.043
  6. Hassoun, J., Panero, S. and Scrosati, B., "Electrodeposited Ni- Sn Intermetallic Electrodes for Advanced Lithium Ion Batteries," J. Power Sources, 160, 1336-1341(2006). https://doi.org/10.1016/j.jpowsour.2006.02.068
  7. Ehrlich, G. M., Durand, C., Chen, X., Hugener, T. A., Spiess, F. and Suib, S. L., "Metallic Negative Electrode Materials for Rechargeable Nonaqueous Batteries," J. Electrochem. Soc., 147, 886-891 (2000). https://doi.org/10.1149/1.1393287
  8. Lee, H. Y., Jang, S. W., Lee, S. M., Lee, S. J. and Baik, H. K., "Lithium Storage Properties of Nanocrystalline $Ni_{3}Sn_{4}$ Alloys Prepared by Mechanical Alloying," J. Power Sources, 112, 8-12 (2002). https://doi.org/10.1016/S0378-7753(02)00047-2
  9. Amadei, I., Panero, S., Scrosati, B., Cocco, G. and Schiffini, L., "The $Ni_{3}Sn_{4}$ Intermetallic as a Novel Electrode in Lithium Cells," J. Power Sources, 143, 227-230(2005). https://doi.org/10.1016/j.jpowsour.2004.11.050
  10. Cheng, X.-Q. and Shi, P.-F., "Electroless Cu-Plated $Ni_{3}Sn_{4}$ Alloy Used as Anode Material for Lithium Ion Battery," J. Alloys Compounds., 391, 241-244(2005). https://doi.org/10.1016/j.jallcom.2004.08.080
  11. Dong, Q. F., Wu, C. Z., Jin, M. G., Huang, Z. C., Zheng, M. S., You, J. K. and Lin, Z. G., "Preparation and Performance of Nickel- Tin Alloys Used as Anodes for Lithium-ion Battery," Solid State Ionics, 167, 49-54(2004). https://doi.org/10.1016/j.ssi.2004.01.007
  12. Nishikawa, K., Dokko, K., Kinoshita, K., Woo, S.-W. and Kanamura, K., "Three-Dimensionally Ordered Macroporous Ni-Sn Anode for Lithium Batteries," J. Power Sources, 189, 726-729 (2009). https://doi.org/10.1016/j.jpowsour.2008.08.041
  13. Woo, S.-W., Okada, N., Kotobuki, M., Sasajima, K., Munakata, H., Kajihara, K. and Kanamura, K., "Highly patterned cylindrical Ni-Sn Alloys with 3-Dimensionally Ordered Macroporous Structure as Anodes for Lithium Batteries," Electrochim. Acta, 55, 8030- 8035(2010). https://doi.org/10.1016/j.electacta.2010.02.002
  14. Sivashanmugam, A., Kumar, T. P., Renganathan, N. G., Gopukumar, S., Wohlfahrt-Mehrens, M. and Garche, J., "Electrochemical Behavior of Sn/$SnO_{2}$ Mixtures for Use as Anode in Lithium Rechargeable Batteries," J. Power Sources, 144, 197-203(2005). https://doi.org/10.1016/j.jpowsour.2004.12.047
  15. Wang, J., Raistrick, I. D. and Huggins, R. A., "Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent- Based Electrolytes," J. Electrochem. Soc., 133, 457-460(1986). https://doi.org/10.1149/1.2108601
  16. Whittingham, M. S., "Inorganic Nanomaterials for Batteries," Dalton Trans., 5424-5431(2008).
  17. Bruce, P. G., Scrosati, B. and Tarascon, J.-M., "Nanomaterials for Rechargeable Lithium Batteries," Angew. Chem. Int. Ed., 47, 2930-2946(2008). https://doi.org/10.1002/anie.200702505
  18. Kim, M. G. and Cho, J., "Reversible and high-Capacity Nanostructured Electrode Materials for Li-ion Batteries," Adv. Funct. Mater., 19, 1497-1514(2009). https://doi.org/10.1002/adfm.200801095
  19. Deng, D., Kim, M. G., Lee, J. Y. and Cho, J., "Green energy Storage Matereials: Nanostructured $TiO_{2}$ and Sn-Based Anodes for Lithium-ion Batteries," Energy Environ. Sci., 2, 818-837(2009). https://doi.org/10.1039/b823474d
  20. Scrosati, B. and Garche, J., "Lithium Batteries: Status, Prospects and Future," J. Power Sources, 195, 2419-2430(2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
  21. Zhang, W., "A Review of the Electrochemical Performance of Alloy Anodes for Lithium-ion Batteries," J. Power Sources, 196, 13-24(2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
  22. Liu, R., Duay, J. and Lee, S. B., "Heterogeneous Nanostructured Electrode Materials for Electrochemical Energy Storage," Chem. Commun., 47, 1384-1404(2011). https://doi.org/10.1039/C0CC03158E

Cited by

  1. Electrochemical Analysis of the Electrodeposition of Platinum Nanoparticles vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.540
  2. 고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극 vol.54, pp.2, 2011, https://doi.org/10.9713/kcer.2016.54.2.262