DOI QR코드

DOI QR Code

Carberry Type 생물반응기에서 암모늄 이온 제거에 의한 돼지유행성설사병 바이러스 백신 생산성 증대

Improvement of Porcine Epidemic Diarrhea Disease Vaccine Productivity by Ammonium Ion Removal in a Carberry Type Bioreactor

  • 이창진 (강원대학교 의생명과학대학 의생명공학과) ;
  • 정연호 (강원대학교 의생명과학대학 의생명공학과)
  • Lee, Chang-Jin (Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University) ;
  • Jeong, Yeon-Ho (Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University)
  • 발행 : 2011.10.01

초록

미립담체에 고정된 Vero 세포를 이용한 돼지유행성설사병 바이러스 백신의 생산성을 향상시키기 위하여 Phillipsite-Gismondine synthetic zeolite가 투석막에 충진된 Carberry type 생물반응기를 사용하여 암모늄 이온을 선택적으로 흡착하였다. Impeller shaft 및 흡착제 사이에 응집된 미립담체 때문에 세포 성장이 감소하는 것으로 보이나, 포도당 소모량과 젖산 생성량의 비교를 통해 판단 할 때 zeolite는 세포에 독성을 나타내지 않았다. 배양배지로부터 암모늄 이온을 제거함으로써 세포성장 및 바이러스 생산 두 단계 모두가 크게 개선되었다. 바이러스 생산에 있어서는 암모늄 이온 제거에 의해 대조군과 비교하여 바이러스 역가가 2배 이상 향상되었다. 연구결과 zeolite는 암모늄 이온을 효과적으로 흡착제거하여 바이러스 백신의 생산성을 높일 수 있는 이상적인 흡착제임을 확인하였다.

The porcine epidemic diarrhea virus(PEDV) production yield in spinner flask cultures using Vero cells immobilized on microcarriers was improved by the selective adsorption of ammonium ions in a Carberry type bioreactor which was equipped with Phillipsite-Gismondine synthetic zeolite. Though the apparent cell growth seemed to be lower than that of control due to the aggregation of microcarriers between impeller shaft and the adsorbent, zeolite was found to not to be toxic to Vero cell, considering estimated glucose and lactate changes. Zeolite was observed to remove ammonium ions effectively in both steps of cell growth and virus production. In virus production, the virus titer with zeolite was two times higher than that without zeolite. Consequently, zeolite was found to be an ideal adsorbent for higher production of virus vaccine with the effective removal of ammonium ions.

키워드

참고문헌

  1. Eagle, H., "The Specific Amino Acid Requirements of a Mammalian Cell(strain L) in Tissue Culture," J. Biol. Chem., 214(2), 839-852(1955).
  2. Raivio, K. O. and Seegmiller, J. E., "Role of Glutamine in Purine Synthesis and in Guanine Nucleotide Formation in Normal Fibroblasts and in Fibroblasts Deficient in Hypoxanthine Phosphoribosyltransferase Activity," Biochim. Biophys. Acta., 299(2), 283-292(1973). https://doi.org/10.1016/0005-2787(73)90351-1
  3. Dalili, M., Sayles, G. D. and Ollis, D. F., "Glutamine Limited Batch Hybridoma Growth and Antibody Production; Experiment and Model," Biotechnol. Bioeng., 36(1), 74-82(1990).
  4. Zielke, H. R., Zielke, C. L. and Ozand, P. T., "Glutamine : a Major Energy Source for Cultured Mammalian Cells," Fed. Proc., 43(1), 121-125(1984).
  5. Jeong, Y. H. and Wang, S. S., "Role of Glutamine in Hybridoma Cell Culture: Effect on Cell Growth, Antibody Production and Cell Metabolism," Enzyme Microb. Technol., 17(1), 47-55(1995). https://doi.org/10.1016/0141-0229(94)00041-O
  6. Ryan, W. L. and Cardin, C., "Amino Acids and Ammonia of Fetal Calf Serum During Storage," Proc. Soc. Exp. Biol. Med., 123(1), 27-30(1966). https://doi.org/10.3181/00379727-123-31393
  7. Visek, W. J., Kolodny, G. M. and Gross, P. R., "Ammonia Effects in Cultures of Normal and Transformed 3T3 Cells," J. Cell Physiol., 80(3), 373-381(1972). https://doi.org/10.1002/jcp.1040800308
  8. Butler, M. and Spier, R. E., "The Effects of Glutamine Utilization and Ammonia Production on the Growth of BHK Cells in Microcarrier Cultures," J. Biotechnol., 1(3-4), 187-196(1984). https://doi.org/10.1016/0168-1656(84)90004-X
  9. Jeong, Y. H. and Wang, S. S., "In situ Removal of Ammonium ions from Hybridoma Cell Culture Media: Selection of Adsorbent," Biotechnol. Tech., 6(4), 341-346(1992). https://doi.org/10.1007/BF02439323
  10. Reuveny, S., Velez, D., Macmillan, J. D. and Miller, L., "Factors Affecting Cell Growth and Monoclonal Antibody Production in Stirred Reactors," J. Immunol. Methods, 86(1), 53-59(1986). https://doi.org/10.1016/0022-1759(86)90264-4
  11. Glacken, M. W., Fleischaker, R. J. and Sinskey, A. J., "Reduction of Waste Product Excretion via Nutrient Control: Possible Strategies for Maximizing Product and Cell Yields on Serum in Cultures of Mammalian Cells," Biotechnol. Bioeng., 28(9), 1376- 1389(1986). https://doi.org/10.1002/bit.260280912
  12. Ito, M. and Mc Limans, W. F., "Ammonia Inhibition of Interferon Synthesis," Cell Biol. Int. Rep., 5(7), 661-666(1981). https://doi.org/10.1016/0309-1651(81)90185-5
  13. Commoy-Chevalier, M. J., Robert-Gailiot, B. and Chany, C., "Effects of Ammonium Salts on the Interferon-induced Antiviral State in Mouse L Cells," J. Gen. Virol., 41(3), 541-547(1978). https://doi.org/10.1099/0022-1317-41-3-541
  14. Jensen, E. M. and Liu, O. C., "Studies of Inhibitory Effect of Ammonium Ions in Several Virus-tissue Culture Systems," Proc. Soc. Exp. Biol. Med., 107, 834-838(1961). https://doi.org/10.3181/00379727-107-26770
  15. Eaton, M. D. and Scala, A. R., "Inhibitory Effect of Glutamine and Ammonia on Replication of Influenza Virus in Ascites Tumor Cells," Virology, 13, 300-307(1961). https://doi.org/10.1016/0042-6822(61)90149-0
  16. Furusawa, E. and Cutting, W., "Inhibitory Effects of Ammonium Sulfate on Columbian SK Virus Propagation in Mouse Ascites Tumor Cells In Vitro," Proc. Soc. Exp. Biol. Med., 111, 71-75(1962). https://doi.org/10.3181/00379727-111-27708
  17. Griffiths, J. B., "The Effects of Adapting Human Diploid Cells to Grow in Glutamic Acid Media on Cell Morphology, Growth, and Metabolism," J. Cell Sci., 12(2), 617-629(1973).
  18. Hosoi, S., Mioh, H., Anzai, C., Sato, S. and Fujiyoshi, N., "Establishment of Namalva Cell Lines Which Grow Continuously in Glutamine-free Medium," Cytotechnology, 1(2), 151-158(1988). https://doi.org/10.1007/BF00146816
  19. Butler, M. and Christie, A., "Adaptation of Mammalian Cells to Non-ammoniagenic Media," Cytotechnology, 15(1-3), 87-94(1994). https://doi.org/10.1007/BF00762382
  20. Genzel, Y., Ritter, J. B., Konig, S., Alt, R. and Reichl, U., "Substitution of Glutamine by Pyruvate to Reduce Ammonia Formation and Growth Inhibition of Mammalian Cells," Biotechnol. Prog., 21(1), 58-69(2005).
  21. Hecht, V., Bischoff, L. and Gerth, K., "Hollow Fiber Supported Gas Membrane for in situ Removal of Ammonium During an Antibiotic Fermentation," Biotechnol. Bioeng., 35(10), 1042-1050 (1990). https://doi.org/10.1002/bit.260351012
  22. Chang, Y. H. D., Grodzinsky, A. J. and Wang, D. I. C., "In-situ Removal of Ammonium and Lactate Through Electrical Means for Hybridoma Cultures," Biotechnol. Bioeng., 47(3), 308-318(1995). https://doi.org/10.1002/bit.260470305
  23. DeBouck, P. and Pensaert, M., "Experimental Infection of Pigs with a New Porcine Enteric Coronavirus, CV 777," Am. J. Vet. Res. 41(2), 219-223(1980).
  24. Dea, S., Vaillancourt, J., Elazhary, Y. and Martineau, G. P., "An Outbreak of Diarrhea in Piglets Caused by a Coronavirus Antigenically Distinct from Transmissible Gastroenteritis Virus," Can. Vet. J., 26(3), 108-111(1985).
  25. Egberink, H. F., Ederveen, J., Callebaut, P. and Horzinek, M.C., "Characterization of the Structural Proteins of Porcine Epizootic Diarrhea Virus, Strain CV777," Am. J. Vet. Res., 49(8), 1320-1324 (1988).
  26. Hofmann, M. and Wyler, R., "Propagation of the Virus of Porcine Epidemic Diarrhea in Cell Culture," J. Clin. Microbiol., 26(11), 2235-2239(1988).
  27. Kweon, C. H., Kwon, B. J., Jung, T. S., Kee, Y. J., Hur, D. H., Hwang, E. K., Rhee, J. C. and An, S. H., "Isolation of Porcine Epidemic Diarrhea Virus (PEDV) in Korea," Korean. J. Vet. Res., 33(2), 249-254(1993).
  28. Park, B. G., Min, Y. W., Chun, G. T., Kim, I. H. and Jeong, Y. H., "Development of An Immobilized Adsorbent for in situ Removal of Ammonium ion from Mammalian Cell Culture Media and Its Application to a Mammalian Cell Bioreactor: I. Development of Immobilized Adsorbent System," Korean J. Biotechnol. Bioeng., 13(4), 404-410(1998).
  29. Park, B. G., Rhee, H. I., Chun, G. T., Kim, I. H. and Jeong, Y. H., "Development of An Immobilized Adsorbent for in situ Removal of Ammonium ion from Animal Cell Culture Media and its Application to a Animal Cell Culture System: II. Application to Cell Culture System," Korean J. Biotechnol. Bioeng., 13(4), 411- 417(1998).