DOI QR코드

DOI QR Code

One-Pot Synthesis of Alkyl-Terminated Silicon Nanoparticles by Solution Reduction

표면 알킬기를 갖는 실리콘 나노입자의 One-Pot 용액환원 합성

  • Yoon, Taegyun (Department of Chemical Engineering, Dong-A University) ;
  • Cho, Mikyung (Department of Chemical Engineering, Dong-A University) ;
  • Sun, Yang-Kook (Department of Energy Engineering, Hanyang University) ;
  • Lee, Jung Kyoo (Department of Chemical Engineering, Dong-A University)
  • Published : 2011.10.01

Abstract

Silicon nanoparticles have attracted a great deal of scientific interests due to its intense photoluminescence in the visible spectral region and its potential applications in biological fluorescence maker, RGB (red, green, blue) display, photonics and photovoltaics etc. Practical applications making use of optical and physicochemical properties of Si nanoparticles requires an efficient synthetic method which allows easy modulation of their size, size distribution as well as surface functionalities etc. In this study, a one-pot solution reduction scheme is attempted to prepare alkyl-terminated Si nanoparticles (<10 nm) with Si precursors, (Octyl)$SiCl_3$ or mixture of (Octyl)$SiCl_3$ and $SiCl_4$, containing alkyl-groups using Na(naphthalide) as reducing agent. The surface capping of Si nanoparticles with octyl-groups as well as Si nanoparticle formation was achieved in one-pot reaction. The hexane soluble Si nanoparticles with octyl-termination were in the range of 2-10 nm by TEM and some oxide groups (Si-O-Si) was present on the surface by EDS/FTIR analyses. The optical properties of Si nanoparticles measured by UV-vis and PL evidenced that photoluminescent Si nanoparticles with alkyl-termination was successfully synthesized by solution reduction of alkyl-containing Si precursors in one-pot reaction.

가시광 영역에서 강한 광루미네선스(photoluminescence, PL) 특성이 있는 실리콘 나노입자는, 생물학적 형광 이미징, RGB(red, green, blue) 디스플레이, 포토닉스, 광전소자 등의 응용소재로 개발될 수 있어 많은 연구가 수행되고 있다. 실리콘 나노입자의 광학적 및 물리화학적 특성을 이용한 실용적인 응용 및 개발을 위해서는 그 특성의 조절이 용이한 제조법 개발이 필수적이다. 본 연구에서는 Na(naphthalide)를 환원제로 사용한 용액환원법을 이용하여 한 단계로 입자표면이 알킬기로 안정화된 평균 <10 nm 크기의 실리콘 나노입자를 합성할 수 있는 방안을 시도하였다. 이를 위하여 실리콘 전구체로 알킬기를 포함하고 있는 (Octyl)$SiCl_3$ 단독 또는 (Octyl)$SiCl_3$$SiCl_4$의 혼합물을 사용하여 Si-Cl 결합의 환원을 통한 입자의 형성과 동시에 반응물에 포함된 Octyl 기에 의한 표면 안정화를 한번에 달성할 수 있었다. 합성한 실리콘 입자의 TEM/EDS, FTIR 분석결과 입자의 크기는 <10 nm이며, 표면이 알킬기로 덮여있어 소수성 용제인 헥산에 쉽게 용해되었으며 입자표면은 소량의 산화된 Si-O-Si 그룹을 포함하고 있었다. UV-vis 및 PL 분석결과 표면 알킬기를 포함하는 실리콘 나노입자의 전형적인 광 특성을 보여 간단한 반응단계를 통하여 표면이 Octyl기로 덮인 실리콘 나노입자를 합성할 수 있음을 보였다. 본 연구에서 시도한 합성법을 응용할 경우, 향 후 실리콘 나노입자의 표면에 다양한 기능기를 one-pot으로 도입할 수 있을 것으로 기대된다.

Keywords

References

  1. Canham, L. T., "Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers," Appl. Phys. Lett., 57, 1046(1990). https://doi.org/10.1063/1.103561
  2. Li, Z. F., Swihart, M. T. and Rechenstein, E., "Luminescent Silicon Nanoparticles Capped by Conductive polyaniline Through The Self-assembly Method," Langmuir, 20, 1963-1971(2004). https://doi.org/10.1021/la0358926
  3. Veinot, J. G. C., "Synthesis, Surface Functionalization, and Properties of Freestanding Silicon Nanocrystals," Chem. Commun., 4160-4168(2006).
  4. Shiohara, A., Hanada, S., Prabakar, S., Fujioka, K., Lim, T. H., Yamamoto, K., Northcote, P. T. and Tilley, R. D., "Chemical Reactions on Surface Molecules Attached to Silicon Quantum Dots," J. Am. Chem. Soc., 132, 248-253(2010). https://doi.org/10.1021/ja906501v
  5. Belomoin, G., Therrien, J., Smith, A., Rao, S., Twesten, R., Chaieb, S., Nayfeh, M. H., Wagner, L. and Mitas, L., "Observation of a Magic Discrete Family of Ultrabright Si Nanoparticles," Appl. Phys. Lett. 80(5), 841-843(2002). https://doi.org/10.1063/1.1435802
  6. Stupca, M., Alsalhi, M., Saud, T. A., Almuhanna, A. and Nayfeh, M. H., "Enhancement of Polycrystalline silicon Solar Cells Using Ultrathin Films of Silicon Nanoparticle," Appl. Phys. Lett., 91, 063107(2007). https://doi.org/10.1063/1.2766958
  7. Lee, J. K., Kung, M. C., Trahey, L., Missaghi, M. N. and Kung, H. H., "Nanocomposites Derived from Phenol-functionalized Si Nanoparticles for High Performance Lithium Ion Battery Anodes," Chem. Mater., 21(1), 6-8(2009). https://doi.org/10.1021/cm8022314
  8. Kim, H., Seo, M., Park, M.-H. and Cho, J., "A Critical Size of Silicon Nano-anodes for Lithium Rechargeable batteries," Angew. Chem. Int. Ed., 49, 2146-2149(2010). https://doi.org/10.1002/anie.200906287
  9. Kwon, Y., Park, G.-S. and Cho, "Synthesis and Electrochemical Properties of Lithium-electroactive Surface-stabilized Silicon Quantum Dots," J. Electrochim. Acta, 52, 4663-4668(2007). https://doi.org/10.1016/j.electacta.2007.01.077
  10. Wiggers, H., Starke, R. and Roth, P., "Silicon Particle Formation by Pyrolysis of Silane in a Hot Wall Gasphase reactor," Chem. Eng. Tech., 24, 261-264(2001). https://doi.org/10.1002/1521-4125(200103)24:3<261::AID-CEAT261>3.0.CO;2-K
  11. Li, X., He, Y., Talukdar, S. S. and Swihart, M. T., "Process for Preparing Macroscopic Quantities of Brightly photoluminescent Silicon Nanoparticles with Emission Spanning the Visible Spectrum," Langmuir, 19, 8490-8496(2003). https://doi.org/10.1021/la034487b
  12. Bley, R. A. and Kauzlarich, S. M., "High Yield Method for Preparing Silicon Nanocrystals with Chemically accessible Surfaces," J. Am. Chem. Soc., 118, 12461-12462(1996). https://doi.org/10.1021/ja962787s
  13. Baldwin, R. K., Pettigrew, K. A., Ratai, E., Augustine, M. P. and Kauzlarich, S. M., "Solution Reduction synthesis of Surface Stabilized Silicon Nanoparticles," Chem. Commun., 1822-1823(2002).
  14. Aihara, S., Ishii, R., Fukuhara, M., Kamata, N., Terunuma, D., Hirano, Y., Saito, N., Aramata, M. and Kashimura, S., "Electroreductive Synthesis and Optical Characterization of Silicon Nanoparticles," J. Non-Cryst. Solids, 296, 135-138(2001). https://doi.org/10.1016/S0022-3093(01)00923-1
  15. Choi, J., Wang, N. S. and Reipa, V., "Electrochemical Reduction Synthesis of Photoluminescent Silicon nanocrystals," Langmuir, 25(12), 7097-7102(2009). https://doi.org/10.1021/la9001829
  16. Heath, J. R., "A Liquid-solution-phase Synthesis of Crystalline Silicon," Science, 258, 1131-1133(1992). https://doi.org/10.1126/science.258.5085.1131
  17. Yang, C.-S., Bley, R. A., Kauzlarich, S. M., Lee, H. W. H. and Delgado, G. R., "Synthesis of Alkylterminated Silicon Nanoclusters by a Solution Route," J. Am. Chem. Soc., 121, 5191-5195(1999). https://doi.org/10.1021/ja9828509
  18. Zou, J., Baldwin, R. K., Pettigrew, K. A. and Kauzlarich, S. M., "Solution Synthesis of Ultrastable luminescent Siloxane-coated Silicon Nanoparticles," Nano Lett., 4(7), 1181-1186(2004). https://doi.org/10.1021/nl0497373
  19. Pettigrew, K. A., Liu, Q., Philip, P. P. and Kauzlarich, S. M., "Solution Synthesis of Alkyl- and Alkyl/alkoxycapped Silicon Nanoparticles Via Oxidation of $Mg_{2}Si$," Chem. Mater., 15, 4005-4011 (2003). https://doi.org/10.1021/cm034403k
  20. Warner, J. H., Rubinsztein-Dunlop, H. and Tilley, R. D., "Watersoluble Photoluminescent Silicon Quantum Dots," J. Phys. Chem., 109, 19064-19067(2005). https://doi.org/10.1021/jp054565z
  21. Liu, Q. and Kauzlarich, S. M., "A New Synthetic Route for the Synthesis of Hydrogen Terminated Silicon nanoparticles," Mater. Sci. Eng., B96, 72-75(2002).

Cited by

  1. Effect of Surfactant Concentration on the Size of One-Pot Synthesized Si Nanoparticles vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10361