DOI QR코드

DOI QR Code

Characteristics of Wakes in a Viscous Liquid Medium of a Simulated GTL Process

모사된 GTL공정의 점성액체 매체에서 wake의 특성

  • Lim, Dae Ho (School of Chemical Engineering, Chungnam National University) ;
  • Jang, Ji Hwa (School of Chemical Engineering, Chungnam National University) ;
  • Kang, Yong (School of Chemical Engineering, Chungnam National University) ;
  • Jun, Ki Won (Green Chemical Technology Division, Korea Research Institute of Chemical Technology)
  • 임대호 (충남대학교 화학공학과) ;
  • 장지화 (충남대학교 화학공학과) ;
  • 강용 (충남대학교 화학공학과) ;
  • 전기원 (한국화학연구원, 그린화학연구단)
  • Published : 2011.10.01

Abstract

Characteristics of bubble driven wakes were investigated in a simulated GTL process(0.102 m ${\times}$ 1.5 m in height) with viscous liquid medium. Effects of gas velocity(0.04 ~ 0.12 m/s) and liquid viscosity(0.001 ~ 0.050 $Pa{\cdot}s$) on the wake characteristics such as rising velocity, frequency, size and holdup were determined by employing a resistivity probe method. The wake phase formed behind the rising multi-bubbles as well as single bubbles were detected effectively from the conductivity fluctuations measured by the probe. Compressed, filtered and regulated air and aqueous solutions of Carboxy Methyl Cellulose(CMC) were used as a dispersed gas phase and a continuous liquid medium, respectively. It was found that the rising velocity and size of wake phase increased with an increase in gas velocity or liquid viscosity. The holdup and frequency of wake phase increased with increasing gas velocity due to the increase of gas input into the process with increasing gas velocity. However, the values of holdup and frequency of wake phase decreased with increasing liquid viscosity, since the size of bubbles and thus that of wakes increased with increasing liquid viscosity. The ratio of wake holdup to that of gas phase, which was in the range of 0.25 ~ 0.48, increased with an increase in liquid viscosity but decreased with gas velocity. The wake characteristics were well correlated in terms of operating variables within this experimental conditions.

점성 액체를 사용한 모사된 GTL공정(직경 0.102 m ${\times}$ 높이 1.5 m)에서 기포에 의해 발생되는 wake의 특성을 고찰하였다. 기체의 유속(0.04 ~ 0.12 m/s)과 액상의 점도(0.001 ~ 0.050 $Pa{\cdot}s$)가 wake의 특성 즉 상승속도, 빈도수, 크기 그리고 체류량에 미치는 영향을 전기저항 탐침법에 의해 결정하였다. 상승하는 단일기포들뿐만 아니라 다중기포의 후면에 형성된 wake 상들도 탐침에 의해 측정된 전기 전도도 요동자료로부터 효과적으로 검침되었다. 유속이 조절되는 압축 여과공기와 CMC 수용액을 각각 분산기체상과 연속액상으로 사용하였다. 실험결과 wake 상의 상승속도와 크기는 기체의 유속 또는 액상의 점도가 증가함에 따라 증가하였다. wake 상의 체류량과 빈도수는 기체의 유속이 증가함에 따라 증가하였는데, 이는 기체유속의 증가에 따라 공정에 유입되는 기체의 양이 증가하기 때문이다. 그러나, 액상의 점도가 증가함에 따라 기포의 크기와 wake의 크기가 증가하기 때문에 wake의 상의 체류량과 빈도수 값은 wake 상의 액상의 점도가 증가함에 따라 감소하였다. Wake 상 체류량의 기체의 체류량에 대한 비율은 0.25~0.48의 범위였으며, 이 비율은 액체점도가 증가함에 따라 증가하였으나 기체의 유속이 증가함에 따라 감소하였다. 본 연구의 실험범위에서 wake 상의 특성들은 운전변수의 상관식으로 잘 나타낼 수 있었다.

Keywords

References

  1. Fan, L. S. and Tsuchiya, K., Bubble Dynamics in liquids and liquid-solid suspension, Stoneham, MA, Butherworth Heinemann (1990).
  2. Deckwer, W. D., Bubble column Reactors, John Wiley and Sons Ltd., (1992).
  3. Krishna, R. and Sie, S. T., "Design and Scale-up of the Fischer-Tropsh Bubble Column Slurry Reactor," Fuel Processing Technol., 64, 73-105(2000). https://doi.org/10.1016/S0378-3820(99)00128-9
  4. Van Baten, J. M., Ellenberger, J. and Krishma, R., "Scale-up Strategy for Bubble Column Slurry Reactors Using CFD Simulations," Catalysis Today, 79-80, 259(2003). https://doi.org/10.1016/S0920-5861(03)00048-8
  5. Cho, Y. J., Woo, K. J., Kang, Y. and Kim, S. D., "Dynamic Characteristics of Heat Transfer Coefficient in Pressurized Bubble Columns with Viscous Liquid Medium," Chem. Eng. Processing, 41, 699(2002). https://doi.org/10.1016/S0255-2701(02)00002-8
  6. Chen, R. C., Wang, F. M. and Lim, T. J., "Bubble Wake Dynamics of a Single Bubble Rising in a Two-dimensional Liquid-solid Fluidized Bed," Chem. Eng. Sci., 54, 4831(1999). https://doi.org/10.1016/S0009-2509(99)00201-8
  7. Li, Y., Zhang, J. and Fan, L. S., "Numerical Simulation of Gasliquid- solid Fluidization Systems Using a Combined CFD-VOFDPM Method: Bubble Wake Behavior," Chem. Eng. Sci., 54, 5101(1999). https://doi.org/10.1016/S0009-2509(99)00263-8
  8. Tsuchiya, K. and Fan, L. S., "Prediction of Solid Concentration Profiles in Three-phase Reactors by a Wake Shedding Model," Chem. Eng. Sci., 43, 1167(1988). https://doi.org/10.1016/0009-2509(88)85077-2
  9. Kitano, K. and Fan, L. S., "Near-wake Structure of a Single Gas Bubble in a Two-dimensional Liquid-solid Fluidized Bed : Solid Holdup," Chem. Eng. Sci., 43, 1355-1361(1988). https://doi.org/10.1016/0009-2509(88)85108-X
  10. Katy, J. and Meneveau, C., "Wake-induced Relative Motion of Bubbles Rising in Line," In'l. J. Multiphase Flow, 22, 239(1996). https://doi.org/10.1016/0301-9322(95)00081-X
  11. Zenit, R. and Magnaudet, J., "Measurements of the Streamwise Vorticity in the Wake of An Oscillating Bubble," Int'l J. Multiphase Flow, 35, 195 (2009). https://doi.org/10.1016/j.ijmultiphaseflow.2008.10.007
  12. Funfschilling, D. and Li, H. Z., "Flow of Non-newtonian Fluids Around Bubbles: PIV Measurements and Birefringence Visualization," Chem. Eng. Sci., 56, 1137(2001). https://doi.org/10.1016/S0009-2509(00)00332-8
  13. Sousa, R. G., Riethmuller, M. L., Pinto, A. M. F. R. and Campos, J. B. L. M., "Flow Around Individual Taylor Bubbles Rising In Stagnant CMC Solutions: PIV Measurements," Chem. Eng. Sci., 60, 1859(2005). https://doi.org/10.1016/j.ces.2004.11.035
  14. Nogueira, S., Riethmuller, M. L., Campos, J. B. L. M. and Pinto, A. M. F. R., "Flow Patterns in the Wake of a Taylor Bubble Rising Through Vertical Columns of Stagnant and Flowing Newtonian Liquids: An Experimental Study," Chem. Eng. Sci., 61, 7199 (2006). https://doi.org/10.1016/j.ces.2006.08.002
  15. Celata, G. P., Cumo, M., D'Annibale, F. and Tomiyama, A., "The Wake Effect on Bubble Rising Velocity in One-component Systems," Int'l J. Multiphase Flow, 30, 939-961(2006).
  16. Lertnuwat, B. and Bunyajitradulya, A., "Effects of Interfacial Shear Condition and Tailing - Corner Radius on the Wake Vortex of a Bubble," Nuclear Eng. Des., 237, 1526-1533(2007). https://doi.org/10.1016/j.nucengdes.2006.12.012
  17. Chen, R. C. and Chou, I. S., "Wake Structure of a Single Bubble Rising in a Two-dimensional Column," Expt. Therm. Fluid Sci., 17, 165-178(1998). https://doi.org/10.1016/S0894-1777(98)00003-X
  18. Kang, Y. and Kim, S. D., "Radial Dispersion Characteristics of Two-and Three-phase Fluidized Bed," I&EC Process Des. Dev., 25, 717-722(1986). https://doi.org/10.1021/i200034a020
  19. Chang, S. K., Kang, Y. and Kim, S. D., "Mass Transfer Characteristics of Three-phase Fluidized Beds," J. Chem. Eng. Japan., 19, 524(1986). https://doi.org/10.1252/jcej.19.524
  20. Shin, I. S., Son, S. M., Kim, U. Y., Kang, Y., Kim, S. D. and Jung, H., "Multiple Effects of Operating Variables on the Bubble Properties in Three-phase Slurry Bubble Columns," KJChE, 26, 587-591(2009).
  21. Kang, Y., Cho, Y. J., Woo, K. J., Kim, K. I. and Kim, S. D., "Bubble Properties and Pressure Fluctuations in Pressurized Bubble Columns," Chem. Eng. Sci., 55, 411-419(2000). https://doi.org/10.1016/S0009-2509(99)00336-X
  22. Son, S. M., Kang, S. H., Kim, U. Y., Kang, Y. and Kim, S. D., "Bubble Properties in Three-phase Inverse Fluidized Beds with Viscous Liquid Medium," Chem. Eng. Processing, 46, 736-741(2007). https://doi.org/10.1016/j.cep.2006.10.002
  23. Jang, J. H., Lim, D. H., Kang, Y. and Jun, K. W., "Holdup Characteristics of Three Functional Regions in a Slurry Bubble Column," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48, 359-364(2010).