DOI QR코드

DOI QR Code

Surface Treatment of Polypropylene using a Large Area Atmospheric Pressure Plasma-solution System

대면적 대기압 플라즈마-용액 시스템을 이용한 폴리프로필렌 표면 처리

  • Tran, Chinh Quoc (School of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Choi, Ho-Suk (School of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 트란꺽시 (충남대학교 바이오응용화학과) ;
  • 최호석 (충남대학교 바이오응용화학과)
  • Published : 2011.06.30

Abstract

We investigated the possibility of introducing functional groups without damaging surface polymeric chains through the treatment of a polypropylene(PP) film immersed in liquid phase using an atmospheric pressure plasma with large area. The ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate: $[BMIM]^{+}[BF_{4}]^{-}$- was successfully applied for generating stable plasmas in the plasma-solution system. We successfully treated the film surface using the plasma-solution system and confirmed various oxygen-containing functional groups formed on the surface of PP film. The surface free energy of PP film was increased with increasing plasma treatment time and power. It also showed a maximum value at the PP sample treated in the ionic liquid solution of 1.5 M. ATR-FTIR analyses revealed the increase of various carbonyl groups(1,726 $cm^{-1}$, 1,643 $cm^{-1}$) and OH groups$(3,100{\sim}3,500\;cm^{-1})$ after plasma treatment of PP film, and XPS also supported the ATR-FTIR result.

대면적 대기압 플라즈마 반응 장비를 플라즈마-용액 시스템에 적용하여 액상 내부에 잠입된 폴리프로필렌(PP) 필름의 표면손상 없이 관능기 도입 가능성을 탐색하였다. 액상으로 1-butyl-3-methylimidazolium tetrafluoroborate: $[BMIM]^{+}[BF_{4}]^{-}$ 이온성 액체 수용액을 사용한 경우, 안정적으로 플라즈마를 발생시킬 수 있었다. PP 필름의 플라즈마 처리 결과, PP 표면에 다양한 산소 함유 관능기들이 도입되었음을 확인할 수 있었다. 플라즈마 처리 후 PP의 표면 자유에너지는 처리시간, 전압의 증가에 따라서 증가하며, 1.5M 이온성 액체 수용액 농도에서 가장 큰 값을 나타내었다. ATR-FTIR 분석 결과, 다양한 카르보닐 기(1,726 $cm^{-1}$, 1,643 $cm^{-1}$)와 하이드록시 기$(3,100{\sim}3,500\;cm^{-1})$의 흡광도가 증가하였고, XPS 분석은 ATR-FTIR 분석 결과를 뒷받침하여 주었다.

Keywords

References

  1. Myung, S. W., Yeom, Y. H., Jang, Y. M., Choi, H. S. and Cho, D. C., "Preparation of a Reticulated Polyurethane Foam Grafted with Poly(acrylic acid) through Atmospheric Pressure Plasma Treatment and its Lysozyme Immobilization," J. Mate. Sci: Mater. Med., 16, 745-751(2005). https://doi.org/10.1007/s10856-005-2612-7
  2. Kwon, O. J., Tang, S., Myung, S. W., Lu, N. and Choi, H. S., "Surface Characteristics of Polypropylene Film Treated by an Atmospheric Pressure Plasma," Surf. Coat. Technol., 192, 1-10 (2005). https://doi.org/10.1016/j.surfcoat.2004.09.018
  3. Kwon, O. J., Myung, S. W., Lee, C. S. and Choi, H. S., "Comparison of the Surface Characteristics of Polypropylene Films Treated by Ar and Mixed gas (Ar/O2) Atmospheric Pressure Plasma," J. Colloid Interface Sci., 295, 409-416(2006). https://doi.org/10.1016/j.jcis.2005.11.007
  4. Zhao, Y., Tang, S., Myung, S. W., Lu, N. and Choi, H. S., "Effect of Washing on Surface Free Energy of Polystyrene Plate Treated by RF Atmospheric Pressure Plasma," Polymer Testing, 25, 327-332(2006). https://doi.org/10.1016/j.polymertesting.2005.12.007
  5. Tang, S., Lu, N., Wang, J. K., Ryu, S. K. and Choi, H. S., "Novel Effects of Surface Modification on Activated Carbon Fibers Using a Low Pressure Plasma Treatment," J. Phys. Chem. C, 111, 1820-1829(2007). https://doi.org/10.1021/jp065907j
  6. Tang, S., Kwon, O. J., Lu, N. and Choi, H. S., "Surface Free Energy Changes of Stainless Steel after One Atmospheric Pressure Plasma Treatment," Korean J. Chem. Eng., 21, 1218-1223(2004). https://doi.org/10.1007/BF02719497
  7. Tang, S., Kwon, O. J., Lu, N. and Choi, H. S., "Surface Characteristics of AISI 304L Stainless Steel After an Atmospheric Pressure Plasma Treatment," Surf. Coat. Technol., 195, 298-306(2005). https://doi.org/10.1016/j.surfcoat.2004.07.071
  8. Tang, S., Lu, N., Myung, S. W. and Choi, H. S., "Enhancement of Adhesion Strength between Two AISI 316 L Stainless Steel Plates through Atmospheric Pressure Plasma Treatment," Surf. Coat. Technol., 200, 5220-5228(2006). https://doi.org/10.1016/j.surfcoat.2005.06.020
  9. Jung, M. H. and Choi, H. S., "Photoresist Etching Using Ar/O2 and He/O2 Atmospheric Pressure Plasma," Thin Solid Films, 515, 2295-2302(2006). https://doi.org/10.1016/j.tsf.2006.03.030
  10. Gubkin, J., "Electrolytische Metallabscheidung an der freien Oberfläche einer Salzlösung," Ann. Physik., 32, 114-115(1887).
  11. Lisitsyn, I. V., Nomiyama, H., Katsuki, S. and Akiyama, H., "Streamer Discharge Reactor for Water Treatment by Pulsed Power," Rev. Sci. Instrum., 70, 3457-3462(1999). https://doi.org/10.1063/1.1149937
  12. Hieda, J., Saito, N. and Takai, O., "Exotic Shapes of Gold Nanoparticles Synthesized Using Plasma in Aqueous Solution," J. Vac. Sci. Technol. A, 26, 854-856(2008). https://doi.org/10.1116/1.2919139
  13. Ichiki, T., Koidesawa, T. and Horiike, Y., "An Atmospheric-pressure Microplasma Jet Source for the Optical Emission Spectroscopic Analysis of Liquid Sample," Plasma Sources Sci. Technol., 12, S16-S20(2003). https://doi.org/10.1088/0963-0252/12/4/315
  14. Titov, V. A., Rybkin, V. V., Shikova, T. G., Ageeva, T. A., Golubchikov, O. A. and Choi, H. S., "Study on the Application Possibilities of an Atmospheric Pressure Glow Discharge with Liquid Electrolyte Cathode for the Modification of Polymer Materials," Surf. Coat. Technol., 199, 231-236(2005). https://doi.org/10.1016/j.surfcoat.2005.01.037
  15. Ishijima, T., Hotta, H., Sugai, H. and Sato, M., "Multibubble Plasma Production and Solvent Decomposition in Water by Slotexcited Microwave Discharge," Appl. Phys. Lett., 91, 121501(2007). https://doi.org/10.1063/1.2783209
  16. Ryzhkov, V. A., "Carbon Nanotube Production by a Cracking of Liquid Hydrocarbons," Physica B, 323, 324-326(2002). https://doi.org/10.1016/S0921-4526(02)01040-2
  17. Kazuhiko, H., Takeru, O., Toshiro, K. and Rikizo, H., "Development of a Plasma Source Using Atmospheric-Pressure Glow Discharge in Contact with Solution," J. Plasma Fusion Res., 81, 417-418(2005). https://doi.org/10.1585/jspf.81.417
  18. Baba, K., Okada, T., Kaneko, T., Hatakeyama, R. and Yoshiki, H., "Investigation of Gas-liquid Interface in Atmospheric-pressure Micro Plasma with Solution," Thin Solid Films, 515, 4308-4311(2007). https://doi.org/10.1016/j.tsf.2006.02.090
  19. Baba, K., Kaneko, T. and Hatakeyama, R., "Ion Irradiation Effects on Ionic Liquids Interfaced with rf Discharge Plasmas," Appl. Phys. Lett, 90, 201501(2007). https://doi.org/10.1063/1.2739327
  20. Kaneko, T., Baba, K. and Hatakeyama, R., "Gas-liquid Interfacial Plasmas: Basic Properties and Applications to Nanomaterial Synthesis," Plasma Phys. Control. Fusion, 51, 124011(2009). https://doi.org/10.1088/0741-3335/51/12/124011
  21. Kaneko, T., Baba, K., Harada, T. and Hatakeyama, R., "Novel Gas-Liquid Interfacial Plasmas for Synthesis of Metal Nanoparticles," Plasma Process. Polym., 6, 713-718(2009). https://doi.org/10.1002/ppap.200900029
  22. Choi, H. S., Rybkin, V. V., Titov, V. A., Shikova, T. G. and Ageeva, T. A., "Comparative Actions of a Low Pressure Oxygen Plasma and an Atmospheric Pressure Glow Discharge on the Surface Modification of Polypropylene," Surf. Coat. Technol., 200, 4479-4488(2006). https://doi.org/10.1016/j.surfcoat.2005.03.037
  23. Choi, H. S., Shikova, T. G., Titov, V. A. and Rybkin, V. V., "Surface Oxidation of Polyethylene Using an Atmospheric Pressure Glow Discharge with Liquid Electrolyte Cathode," J. Colloid Interface Sci., 300, 640-647(2006). https://doi.org/10.1016/j.jcis.2006.04.001

Cited by

  1. Enhanced Hydrophilicity of Polyethersulfone Membrane by Various Surface Modification Methods vol.38, pp.2, 2014, https://doi.org/10.7317/pk.2014.38.2.205