DOI QR코드

DOI QR Code

Dispersion and Stability of Platinum Catalysts Supported on Titania-, Vanadia-, Zirconia- and Ceria-Incorporated Silicas

티타니아, 바나디아, 지르코니아, 세리아를 고정한 실리카에 담지된 백금 촉매의 분산성과 안정성

  • Kim, Mi-Young (School of Applied Chemical Engineering and The Research Institute for Catalysis, Chonnam National University) ;
  • Seo, Gon (School of Applied Chemical Engineering and The Research Institute for Catalysis, Chonnam National University) ;
  • Park, Jung-Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Eun-Seok (Heesung Catalysts Corp.)
  • 김미영 (전남대학교 응용화학공학부, 전남대학교 촉매연구소) ;
  • 서곤 (전남대학교 응용화학공학부, 전남대학교 촉매연구소) ;
  • 박정현 (충북대학교 화학공학과) ;
  • 신채호 (충북대학교 화학공학과) ;
  • 김은석 (희성촉매주식회사)
  • Published : 2011.01.30

Abstract

Platinum catalysts were prepared by impregnating platinum precursor on titania-, vanadia-, zirconia- and ceria-incorporated silicas followed by hydrogen peroxide treatment. The effects of the oxide incorporation and the hydrogen peroxide treatment in the preparation of the platinum catalysts on their platinum dispersion and catalytic activity in carbon monoxide oxidation were investigated. XRD, TEM, EXAFS, XPS and carbon monoxide chemisorption studies confirmed the high dispersion of platinum even on silica by the oxide incorporation and hydrogen peroxide treatment. However, the type of oxides incorporated on silica caused considerable variances in the adsorption and the catalytic activity in the oxidation of carbon monoxide on them. The incorporation of titania, zirconia and ceria on silica and further hydrogen peroxide treatment enhanced the platinum dispersion, resulting in the improved catalytic activities. Among the catalysts supported on the oxide-incorporated silicas, the platinum catalyst supported on zirconia-incorporated silica exhibited the highest activity because of the highest platinum dispersion due to the formation of Pt-O-Zr bonds.

티타니아, 바나디아, 지르코니아, 세리아를 고정한 실리카에 백금을 담지한 후 과산화수소로 처리하여 제조한 백금 촉매에서 산화물 고정과 과산화수소 처리가 백금의 분산 상태 및 일산화탄소 산화반응에서 이들의 촉매 활성에 미치는 영향을 조사하였다. 산화물을 고정하고 과산화수소로 처리하면 실리카에도 백금이 잘 분산될 수 있음을 XRD, TEM, EXAFS, XPS, 일산화탄소 화학흡착 방법으로 검증하였다. 그러나 일산화탄소의 흡착성질과 일산화탄소 산화반응에서 촉매 활성은 고정한 산화물 종류에 따라 상당히 달랐다. 티타니아, 지르코니아, 세리아를 실리카에 고정하고 과산화수소로 처리하여 제조한 백금 촉매에서는 백금의 분산도가 높아져서 일산화탄소 산화반응에서 활성이 증진되었다. Pt-O-Zr 결합이 생성되어 백금의 분산도가 크게 향상된 지르코니아 고정 백금 촉매에서 산화물 고정과 과산화수소 처리로 인한 활성 증진 효과가 가장 컸다.

Keywords

References

  1. Douidah, A., Marecot, P. and Barbier, J., "Toward a Better Understanding of the Stability of Supported Platinum Catalysts in Aqueous Phase under Hydrogen Atmosphere at Room Temperature," Appl. Catal. A-Gen., 225, 11-19(2002). https://doi.org/10.1016/S0926-860X(01)00619-6
  2. Neyestanaki, A. K., Klingstedt, F., Salmi, T. and Murzin, D. Y., "Deactivation of Postcombustion Catalysts, A Review," Fuel, 83, 395-408(2004). https://doi.org/10.1016/j.fuel.2003.09.002
  3. Rase, H. F., Handbook of Commercial Catalysts-Heterogeneous Catalysts, CRC Press, Boca Raton(2000).
  4. Oudenhuijzen, M. K., Kooyman, P. J., Tappel, B., Bokhoven, J. A. and Koningsberger, D. C., "Understanding the Influence of the Pretreatment Procedure on Platinum Particle Size and Particle-Size Distribution for $SiO_2$ Impregnated with $[Pt^{2+}(NH_3)_4](NO_3^-)_2$: A Combination of HRTEM, Mass Spectrometry, and Quick EXAFS," J. Catal., 205, 135-146(2002). https://doi.org/10.1006/jcat.2001.3433
  5. Goguet, A., Schweich, D. and Candy, J. P., "Preparation of a Pt/$SiO_2$ Catalyst II. Temperature-Programmed Decomposition of the Adsorbed Platinum Tetrammine Hydroxide Complex under Flowing Hydrogen, Oxygen, and Argon," J. Catal., 220, 280-290(2003). https://doi.org/10.1016/S0021-9517(03)00189-1
  6. Miller, J. T., Schreier, M., Kropf, A. J. and Regalbuto, J. R., "A Fundamental Study of Platinum Tetraammine Impregnation of Silica 2. The Effect of Method of Preparation, Loading, and Calcinations Temperature on (Reduced) Particle Size," J. Catal., 225, 203-212(2004). https://doi.org/10.1016/j.jcat.2004.04.007
  7. Goscianska, J., Fiedorow, R., Wawrzynczak, A. and Ziolek, M., "The Effect of Zirconium and Niobium Oxidic Species on Platinum Dispersion in 1%Pt/Nb,Zr-Containing MCM-41," Catal. Today, 142, 298-302(2009). https://doi.org/10.1016/j.cattod.2008.08.019
  8. Foger, K, Catalysis Science and Technology, Anderson, J. R. and Boudart, M. Ed., vol. 6, chap. 4, Springer-Verlag, Berlin(1984).
  9. Mcvicker, G. B. and Ziemiak, J. J., "Chemisorption Properties of Platinum and Iridium Supported on $TiO_2-A1_2O_3$ Mixed-Oxide Carriers: Evidence for Strong Metal-Support Interaction Formation," J. Catal., 95, 473-481(1985). https://doi.org/10.1016/0021-9517(85)90125-3
  10. Ruiz-Martinez, J., Sepulveda-Escribano, A., Anderson, J. A. and Rodríguez-Reinoso, F., "Spectroscopic and Microcalorimetric Study of a $TiO_2$-Supported Platinum Catalyst," Phys. Chem. Chem. Phys., 11, 917-920(2009). https://doi.org/10.1039/B816601C
  11. Kim, M.-Y., You, Y. S., Han, H.-S. and Seo, G., "Preparation of Highly Dispersive Platinum Catalysts Impregnated on Titania-Incorporated Silica Support," Catal. Lett., 120, 40-47(2008). https://doi.org/10.1007/s10562-007-9246-y
  12. Kim, M.-Y., Jung, S. B., Kim, M. G., You, Y. S., Park, J.-H., Shin, C.-H. and Seo, G., "Preparation of Highly Dispersive and Stable Platinum Catalysts Supported on Siliceous SBA-15 Mesoporous Material: Roles of Titania Layer Incorporation and Hydrogen Peroxide Treatment," Catal. Lett., 129, 194-206(2009). https://doi.org/10.1007/s10562-008-9790-0
  13. Kim, M.-Y., Park, J.-H., Shin, C.-H., Han, S.-W. and Seo, G., "Dispersion Improvement of Platinum Catalysts Supported on Silica, Silica-Alumina and Alumina by Titania Incorporation and pH Adjustment," Catal. Lett., 133, 288-297(2009). https://doi.org/10.1007/s10562-009-0188-4
  14. Kim, M.-Y., Park, S. M., Seo, G. and Song, K.-S., "Highly Stable Platinum Catalysts in Propane Combustion Prepared by Supporting Platinum on Zirconia-Incorporated Silica," Catal. Lett., 138, 205-214(2010). https://doi.org/10.1007/s10562-010-0401-5
  15. Ramaker, D. E., Graaf, J., Veen, J. A. R. and Koningsberger, D. C., "Nature of the Metal-Support Interaction in Supported Pt Catalysts: Shift in Pt Valence Orbital Energy and Charge Rearrangement," J. Catal., 203, 7-17(2001). https://doi.org/10.1006/jcat.2001.3299
  16. Ito, S.-I., Fujimori, T., Nagashima, K., Yuzaki, K. and Kunimori, K., "Strong Rhodium-Niobia Interaction in $Rh/Nb_2O_5$, $Nb_2O_5-Rh/SiO_2$ and $RhNbO_4/SiO_2$ Catalysts: Application to Selective CO Oxidation and CO Hydrogenation," Catal. Today, 57, 247-254(2000). https://doi.org/10.1016/S0920-5861(99)00333-8
  17. Jochuma, W., Ederb, D., Kaltenhausera, G. and Kramer, R., "Impedance Measurements in Catalysis: Charge Transfer in Titania Supported Noble Metal Catalysts," Top. Catal., 46, 49-55(2007). https://doi.org/10.1007/s11244-007-0314-8
  18. Nagai, Y., Hirabayashi, T., Dohmae, K., Takagi, N., Minami, T., Shinjoh, H. and Matsumoto, S., "Sintering Inhibition Mechanism of Platinum Supported on Ceria-Based Oxide and Pt-Oxide-Support Interaction," J. Catal., 242, 103-109(2006). https://doi.org/10.1016/j.jcat.2006.06.002
  19. Adam, W., Malisch, W., Roschmann, K. J., Saha-Möller, C. R., Schenk, W. A., "Catalytic Oxidations by Peroxy, Peroxo and Oxo Metal Complexes: an Interdisciplinary Account with a Personal View," J. Organomet. Chem., 661, 3-16(2002). https://doi.org/10.1016/S0022-328X(02)01806-5
  20. Geobaldo, F., Bordiga, S., Zecchina, A., Gianello, E., Leofanti, G. and Petrini, G., "DRS UV-Vis and EPR Spectroscopy of Hydroperoxo and Superoxo Complexes in Titanium Silicalite," Catal. Lett., 16, 109-115(1992). https://doi.org/10.1007/BF00764360
  21. Giamello, E., Rumori, P., Geobaldo, F., Fubini, B. and Paganini, M., "The Interaction between Hydrogen Peroxide and Metal Oxides: EPR Investigations," Appl. Magn. Reson., 10, 173-192(1996). https://doi.org/10.1007/BF03163108
  22. Neumann, R. and Levin-Elad, M., "Vanadium Silicate Xerogels in Hydrogen Peroxide Catalyzed Oxidations," Appl. Catal. A-Gen., 122, 85-97(1995). https://doi.org/10.1016/0926-860X(94)00206-1
  23. Aboukais, A., Zhilinskaya, E. A., Lamonier, J.-F. and Filimonov, I. N., "EPR Study of Ceria-Silica and Ceria-Alumina Catalysts: Localization of Superoxide Radical," Colloid Surf. A-Physicochem. Eng. Asp., 260, 199-207(2005). https://doi.org/10.1016/j.colsurfa.2005.02.036
  24. Swatsitang, E. and Krochai, M., "Preparation and Characterization of Silicon from Rice Hulls," J. Met. Mater. Miner., 19, 91-94 (2009).
  25. Zosimova, P. A., Smirnov, A. V., Nesterenko, S. N., Yuschenko, V. V., Sinkler, W., Kocal, J., Holmgren, J. and Ivanova, I. I., "Synthesis, Characterization, and Sulfur Tolerance of Pt-MoOx Catalysts Prepared from Pt-Mo Alloy Precursors," J. Phys. Chem. C, 111, 14790-14798(2007). https://doi.org/10.1021/jp073410j
  26. Maniguet, S., Mathew, R. J. and Russell, A. E., "EXAFS of Carbon Monoxide Oxidation on Supported Pt Fuel Cell Electrocatalysts," J. Phys. Chem. B, 104, 1998-2004(2000). https://doi.org/10.1021/jp992947x
  27. Koningsberger, D. C. and Gates, B. C., "Nature of the Metal-Support Interface in Supported Metal Catalysts: Results from X-ray Absorption Spectroscopy," Catal. Lett., 14, 271-277(1992). https://doi.org/10.1007/BF00769664
  28. Silvestre-Albero, J., Coloma, F., Sepulveda-Escribano, A. and Rodriguez-Reinoso, F., "Effect of the Presence of Chlorine in Bimetallic PtZn/CeO2 Catalysts for the Vapor-Phase Hydrogenation of Crotonaldehyde," Appl. Catal. A-Gen., 304, 159-167(2006). https://doi.org/10.1016/j.apcata.2006.02.039
  29. Silvestre-Albero, J., Sepulveda-Escribano, A., Rodriguez-Reinoso, F. and Anderson, J. A., "Influence of Zn on the Characteristics and Catalytic Behavior of $TiO_2$-Supported Pt Catalysts," J. Catal., 223, 179-190(2004). https://doi.org/10.1016/j.jcat.2004.01.019
  30. Jain, S. K., Crabb, E. M., Smart, L. E., Thompsett, D. and Steele, A. M., "Controlled Modification of $Pt/Al_2O_3$ for the Preferential Oxidation of CO in Hydrogen: A Comparative Study of Modifying Element," Appl. Catal. B-Environ., 89, 349-355(2009). https://doi.org/10.1016/j.apcatb.2008.12.013
  31. Alayon, E. M. C., Singh, J., Nachtegaal, M., Harfouche, M. and Bokhoven, J. A., "On Highly Active Partially Oxidized Platinum in Carbon Monoxide Oxidation over Supported Platinum Catalysts," J. Catal., 263, 228-238(2009). https://doi.org/10.1016/j.jcat.2009.02.010
  32. Jenewein, B., Penner, S. and Hayek, K., "Structure-Activity Correlation in Thin Film Model Catalysts: CO Hydrogenation on Rh/$VO_x$ Part II. Catalytic Activity as a Function of Oxidation and Reduction," Appl. Catal. A-Gen., 308, 43-49(2006). https://doi.org/10.1016/j.apcata.2006.04.031
  33. Cho, S. H., Park, J. S., Choi, S. H., Lee, S. K. and Kim, S. H., "Effect of Water Vapor on Carbon Monoxide Oxidation over Promoted Platinum Catalysts," Catal. Lett., 103, 257-261(2005). https://doi.org/10.1007/s10562-005-7162-6
  34. Graf, P. O., Vlieger, D. J. M., Mojet, B. L. and Lefferts, L., "New Insights in Reactivity of Hydroxyl Groups in Water Gas Shift Reaction on Pt/$ZrO_2$," J. Catal., 262, 181-187(2009). https://doi.org/10.1016/j.jcat.2008.12.015

Cited by

  1. Mixed Oxide vol.24, pp.5, 2013, https://doi.org/10.7316/KHNES.2013.24.5.359
  2. Surfaces vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1100
  3. vol.52, pp.4, 2014, https://doi.org/10.9713/kcer.2014.52.4.538
  4. 지르코니아와 금 표면 위의 메르캡토언데실인산층의 정전기적 상호작용 vol.56, pp.5, 2018, https://doi.org/10.9713/kcer.2018.56.5.625