DOI QR코드

DOI QR Code

A Study of Fiber-Reinforced Material Models for the Mechanical Characteristics of Human Annulus Fibrosus

인체의 윤상인대의 역학적 특성 모사를 위한 섬유 강화 모델에 관한 연구

  • 임준택 (단국대학교 기계공학과) ;
  • 최덕기 (단국대학교 기계공학과)
  • Received : 2010.10.05
  • Accepted : 2011.03.18
  • Published : 2011.06.01

Abstract

Human soft tissues, including muscles, ligaments, skin, and blood vessels, are an interesting subject because damage to them can be observed in everyday life. Besides the lack of available experimental data and the large deformation upon loading, the anisotropic and compressible nature of annulus fibrosus makes it more difficult to find a simple material model. A fiber-reinforced hyperelastic material model is used to determine the stress-strain curves upon uniaxial loading. The energy potential function for annulus fibrosus is composed of three different parts: matrix, fibers, and matrix-fiber interaction, which accounts for the angles between two families of fibers. In this paper, two different types of energy potential function for the matrix are considered, and are inserted into the fiber-reinforced model. The calculated results are compared with the Neo-Hookean model and experimental data, and reasonable agreement is observed overall.

인체의 근육, 힘줄, 피부와 혈관 등은 일상생활 속에서 다양한 손상을 입는 경우가 많으므로 관심을 갖고 연구해야할 주제이다. 인체의 윤상인대의 역학적 특성을 얻기 위해서는 부족한 실험 자료를 감안하고서도 대변형뿐만 아니라 이방성 및 압축성까지 고려해야 하는 어려움이 있다. 본 연구에서는 섬유강화재료 모델을 사용하여 초탄성 재료 모델을 사용하고, 모재, 섬유 및 모재와 섬유와의 상관관계를 포함하는 에너지 함수를 도입하여 실험값과 비교하여 보았다. 윤상인대의 내부에서 2종류의 섬유는 일정한 각도를 갖고 있다고 가정하였다. 섬유강화재료 모델을 사용함에 있어서 모재에 대한 두 종류의 다른 에너지 함수를 대입하여 Neo-Hookean 재료를 사용하여 계산한 결과 및 기존에 알려진 실험결과와 비교하였으며 본 연구에서 제시된 모재에 관한 에너지 함수의 타당성을 보였다.

Keywords

References

  1. Fung, Y. C., 1993, Biomechanics-Mechnical Properties of Living Tissues 2nd Edition, Springer-Verlag, New York, NY, USA.
  2. Almeida, E. S. and Spilker, R. L., 1998, "Finite Element Formulation for Hyperelastic Transversely Isotropic Biphasic Soft Tissues," Computer Methods in Applied Mechanics and Engineering, Vol. 151, pp. 513-538. https://doi.org/10.1016/S0045-7825(97)82246-3
  3. Limbert, G. and Middleton, J., 2004, "A Transversely Isotropic Viscohyperelastic Material Application to The Modeling of Biological Soft Connective Tissues," International Journal of Solids and Structures, Vol. 41, pp. 4237-4260. https://doi.org/10.1016/j.ijsolstr.2004.02.057
  4. Limbert, G. and Middleton, J., 2006, "A Constitutive Model of The Posterior Cruciate Ligament," Medical Engineering & Physics, Vol. 28, pp. 99-113. https://doi.org/10.1016/j.medengphy.2005.03.003
  5. Hall, S. J., 2003, Basic Biomechanics 3rd Edition, McGraw-Hill, USA.
  6. Holzapfel, G. A. and Kroon, M., 2008, "A New Constitutive Model for Multi-layered Collagenous Tissues," Journal of Biomechanics.
  7. Han-Chin, W. and Ren-Feng, Y., 1976, "Mechanical Behavior of the Human Annulus Fibrosus," Journal of Biomechanics, Vol. 9, pp. 1-7. https://doi.org/10.1016/0021-9290(76)90132-9
  8. Ebara S, Iatridis J. C., Setton L. A., Foster R. J., Mow V. C. and Weidenbaum M., 1996, "Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus," An International Journal for the Study of the Spine, Vol. 21, pp. 452-461.
  9. Elliott, D. M. and Setton, L. A., 2001, "Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus : Experimental Measurement and Material Model Predictions," Journal of Biomechanical Engineering, Vol. 123, pp. 256-263. https://doi.org/10.1115/1.1374202
  10. Lotz, J. C. nad Wagner, D. R., 2004, "Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus," Journal of Orthopedic Research, Vol. 22, pp. 901-909. https://doi.org/10.1016/j.orthres.2003.12.012
  11. Lotz, J. C. and Klisch, S. M., 1999, "Application of a Fiber-reinforced Continuum Theory to Multiple Deformation of the Annulus Fibrosus," Journal of Biomechanics, Vol. 32, pp. 1027-1036. https://doi.org/10.1016/S0021-9290(99)00108-6
  12. Guo, Z. Y., Peng, X. Q. and Moran, B., 2007, "Mechanical Response of Neo-Hookean Fiberreinforced Incompressible Nonlinearly Elastic Solids," International Journal of Solids and Structures, Vol. 44, pp. 1949-1969. https://doi.org/10.1016/j.ijsolstr.2006.08.018
  13. Guo, Z. Y., Peng, X. Q. and Moran, B., 2007, "Large Deformation Response of a Hyperelastic Fibre-reinforced Composit : Theoretical Model and Numerical Validation," Composites Part A: Applied Science and Manufacturing, Vol. 38, pp. 1842-1851. https://doi.org/10.1016/j.compositesa.2007.04.004
  14. Guo, Z. Y., Peng, X. Q. and Moran, B., 2006, "An Anisotropc Hyperelastic Constitutive Model with Fiber-matrix Shear Interaction for the Human Annulus Fibrosus," Journal of Applied Mechanics, Vol. 73, pp. 815-824. https://doi.org/10.1115/1.2069987
  15. Guo, Z. Y., Peng, X. Q. and Moran, B., 2006, "A Composites-based Hyperelastic Constitutive Model for Soft Tissue with Application to the Human Annulus Fibrosus," Journal of the Mechanics and Physics of Solids, Vol. 54, pp. 1952-1971. https://doi.org/10.1016/j.jmps.2006.02.006
  16. Pioletti, D. P. and Rakotomanana, L. R., 2000, "Non-linear Viscoelastic Laws for Soft Biological Tissues," European Journal of Mechanics A/Solids, Vol. 19, pp. 749-759. https://doi.org/10.1016/S0997-7538(00)00202-3