DOI QR코드

DOI QR Code

Application of Dynamically Coupled POM-WAM to Undertow Simulation

동적 결합형 POM-WAM 모형의 해향저류 모의 적용

  • Chun, Je-Ho (Institute of Construction and Environmental Research, Handong Global University) ;
  • Ahn, Kyung-Mo (School of Spatial and Environment System Engineering, Handong Global University) ;
  • Suh, Kyung-Duck (Department of Civil and Environmental Engineering & Integrated Research Institute of Civil and Environmental Engineering, Seoul National University) ;
  • Yoon, Jong-Tae (Department of Civil Engineering, Kyungsung University)
  • 천제호 (한동대학교 건설환경연구소) ;
  • 안경모 (한동대학교 공간환경시스템공학부) ;
  • 서경덕 (서울대학교 건설환경공학부 및 건설환경종합연구소) ;
  • 윤종태 (경성대학교 토목공학과)
  • Received : 2011.02.05
  • Accepted : 2011.04.06
  • Published : 2011.04.29

Abstract

In the present study, the dynamically coupled POM-WAM of Chun et al.(2009) was applied to the numerical simulation of undertow, one of the nearshore currents. To improve the accuracy of the numerical model results in surf zone, the transport equation of the surface roller was solved, and its effects were incorporated into the present numerical model. The numerical model has been applied to two hydraulic experiments of Okayasu and Katayama(1992) and Cox and Kobayashi(1997). The numerical results were compared with the hydraulic experimental results to give a good concurrence. It is concluded that the present numerical model can be applied to the shallow water region including surf zone.

본 연구에서는 천 등(2009)의 동적결합형 POM-WAM 모형을 천해역 해빈류 현상 중 하나인 해향저류(undertow) 문제에 적용하였다. 수치모형의 해향저류 계산 결과를 향상시키기 위해 surface roller에 대한 방정식을 풀고, 이를 해향저류 계산에 포함시켰다. 수치모형을 Okayasu and Katayama(1992) 및 Cox and Kobayashi(1997)의 수리모형 실험에 적용하고, 계산 결과를 수리모형 실험 결과 및 Tajima and Madsen(2006)의 수치계산 결과와 함께 비교하였다. 그 결과, 본 수치모형의 계산결과와 실험결과가 잘 일치하는 것으로 나타났다. 이를 통해, 본 수치모형이 쇄파대를 포함한 천해역에 적용 가능함을 확인하였다.

Keywords

References

  1. 윤종성, 이동근, 김인철 (2006). 개량형 POM을 이용한 수역에서의 저층수의 거동에 관한 연구. 한국해안.해양공학회지, 18(3), 198-210.
  2. 장성태 (2000). 낙동강 하구의 해양환경에 관한 연구: 강수의 유출거동과 혼합을 중심으로. 동아대학교 박사학위 논문.
  3. 천제호, 안경모, 윤종태 (2006). 음해법을 이용한 WAM모형의 태풍파랑 수치모의. 한국해안해양공학회지, 18(4), 294-300.
  4. 천제호, 안경모, 윤종태 (2007). 천해역으로 확장된 WAM모형에 의한 영일만 수치모의. 한국해안해양공학회지, 19(6), 511-520.
  5. 천제호, 안경모, 윤종태 (2008). WAM모형의 천해역 확장에 관한 연구. 한국해안.해양공학회지, 20(1), 148-156.
  6. 천제호, 안경모, 윤종태 (2009). 천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 2. 태풍 매미에 의한 해일-조석-파랑 모델의 정확성 검토. 한국해안.해양공학회지, 21(1), 79-90.
  7. Battjes, J.A. and Janssen, P.A.E.M. (1978). Energy loss and set-up due to breaking random waves. Proc. 16th Int'l Conf. Coastal Eng., 563-587.
  8. Bijker, E.W., Kalwijk, J.P. and Pieters, T. (1974). Mass transport in gravity waves on a slopping bottom. Proc. 14th Int'l Conf Coastal Eng., 447-465.
  9. Choi, B.H., Eum, H.M., Kim, H.S., Jeong, W.M. and Shim, J.S. (2004). Wave-tide-surge coupled simulation for typhoon Maemi. Workshop on Waves and Storm Surges around Korean Peninsula, 121-144.
  10. Cieslikiewcz, W. and Herman, A. (2002). Wave and current modelling over the Baltic sea and the Gdansk bay. Proc. 28th Int'l Conf. Coastal Eng., Cardiff, UK, 176-187.
  11. Cox, D.T. and Kobayashi, N. (1997). Kinematic undertow model with logarithmic boundary layer. Journal of Waterway, Port, Coastal and Ocean Engineering, 123(6), 354-360. https://doi.org/10.1061/(ASCE)0733-950X(1997)123:6(354)
  12. Duncan, J.H. (1981). An experiment investigation of breaking waves produced by a towed hydrofoil. Proc. R. Soc. London, A377, 331-348.
  13. Kuroiwa, M., Noda, H. and Matsubara, Y. (1998). Applicability of a quasi-three dimensional numerical model to nearshore currents. Proc. 26th Int'l Conf. Coastal Eng., Copenhagen, Denmark, 814-828.
  14. Lippmann, T.C., Brookins, A.H. and Thorton, E.B. (1996). Wave energy transformation on natural profiles. Coastal Engineering, 27, 1-20. https://doi.org/10.1016/0378-3839(95)00036-4
  15. Liu, H. and Xie, L. (2009). A numerical study on the effect of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989. Continental Shelf Research, 29(11). 1454-1463.
  16. Longuet-Higgins, M.S. and Stewart, R.W. (1964). Radiation stresses in water waves: a physical discussion, with applications. Deep sea research, 11(4), 529-562.
  17. Madsen, O.S. (1994). Spectral wave-current bottom boundary layer flows. Proc. 24th Int'l Conf. Coastal Eng., Kobe, Japan, 384-398.
  18. Moon, I.J. (2000). Development of a coupled ocean-wave circulation model its application to numerical experiments for wind waves, storm surges and ocean circulation for the Yellow and East China seas. Ph.D. Dissertation, Seoul National University.
  19. Monbaliu, J., Padilla-Hernandez, R., Hargreaves, J.C., Albiach, J.C.C., Luo, W., Sclavo, M. and Gunther, H. (2000). The spectral wave model, WAM, adapted for applications with high spatial resolution. Coastal Engineering, 41(1), 41-62. https://doi.org/10.1016/S0378-3839(00)00026-0
  20. Okayasu, A., Shibayama, T. and Horikawa, K. (1988). Vertical distribution of undertow in the surf zone. Proc. 21st Int'l Conf. Coastal Eng., 478-491.
  21. Okayasu, A. and Katayama, H. (1992). Distribution of undertow and long-wave component velocity due to random waves. Proc. 23rd Int'l Conf. Coastal Eng., 883-893.
  22. Osuna, P. and Monbaliu, J. (2004). Wave-current interaction in the southern North sea. Journal of Marine Systems, 52, 65-87. https://doi.org/10.1016/j.jmarsys.2004.03.002
  23. Sheng, Y.P., Alymov, V. and Paramygin, V.A. (2010). Simulation of storm surge, wave, currents, and inundataion in the outer banks and Chesapeake bay during hurricane Isabel in 2003: The importance of waves. Journal of geophysical research 115, c04008, doi:10.1029/2009JC005402.
  24. Stive, M.J.F. and Wind, H.G. (1986). Cross-shore mean flow in the surf zone. Coastal Engineering, 10, 325-340. https://doi.org/10.1016/0378-3839(86)90019-0
  25. Smith, J.M., Svendsen, I.A. and Putrevu, U. (1992). Vertical structure of the nearshore current at Delilah: mearsured and modeled. Proc. 23rd Int'l Conf. Coastal Eng., 2825-2838.
  26. Svendsen, I.A. (1984). Wave heights and set-up in a surf zone. Coastal Engineering, 8, 303-329. https://doi.org/10.1016/0378-3839(84)90028-0
  27. Svendsen, I.A. (2006). Introduction to nearshore hydrodynamics. World Scientific.
  28. Tajima, Y. and Madsen, O.S. (2006). Modeling near-shore waves, surface rollers, and undertow velocity profiles. Journal of Waterway, Port, Coastal, and Ocean Engineering, 132(6), 429-438. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:6(429)
  29. Xia, H., Xia, Z. and Zhu, L. (2004). Vertical variation in radiation stress and wave-induced current. Coastal Engineering, 51, 309-321. https://doi.org/10.1016/j.coastaleng.2004.03.003
  30. Xie, L., Liu, H. and Peng, M. (2008). The effect of wave-current interaction on the storm surge and inundation in Charleston harbor during Hurricane Hugo 1999. Ocean modelling, 20, 252-269. https://doi.org/10.1016/j.ocemod.2007.10.001
  31. Xie, L., Wu, K., Pietrafesa, L. and Zhang, C. (2001). A numerical study of wave-current interaction through surface and bottom stresses: wind-driven circulation in the south Atlantic Bight under uniform winds. Journal of Geophysical Research, 106(C8), 16841-16855. https://doi.org/10.1029/2000JC000292
  32. Zhang, M.Y. and Li, Y.S. (1997). The dynamic coupling of a thirdgeneration wave model and a 3D hydrodynamic model through boundary layers. Continental Shelf Research, 17(10), 1141-1170. https://doi.org/10.1016/S0278-4343(97)00010-1