DOI QR코드

DOI QR Code

Antimicrobial Effect of Kaempferol on Psychrotrophic Bacillus cereus Strains Outbreakable in Dairy Products

  • Received : 2010.12.30
  • Accepted : 2011.03.24
  • Published : 2011.04.30

Abstract

The objective of this study was to evaluate the antimicrobial effects of various natural flavonoids against growth of psychotropic Bacillus cereus strains, which cause dairy food outbreaks. Flavonoids were first screened for their ability to inhibit growth of B. cereus strains using the paper-disc diffusion test. Second, the growth inhibitory effect of selected flavonoids was evaluated in tryptic soy broth supplemented with 0.6% yeast extract, and the bactericidal effect of the flavonoids was measured in 0.8% (w/v) NaCl solution. Based on the paper-disc diffusion test, kaempferol was effectively active against B. cereus P14 and B. cereus KCCM 40935. Kaempferol had an antimicrobial effect at concentrations greater than 100 ${\mu}M$, and the numbers of B. cereus P14 and B. cereus KCCM 40935 decreased by 3.55 and 1.5 log cycles, respectively. The cell numbers of B. cereus P14 and B. cereus KCCM 40935 treated with 50 ${\mu}M$ kaempferol were reduced by 4.18 and 2.84 log cycles during a 24 h incubation to test the bactericidal effect of kaempferol (p<0.05). The results indicate that kaempferol had the greatest antimicrobial effect among the psychotropic B. cereus strains and the natural flavonoids tested.

Keywords

References

  1. Agata, N., Mori, M., Ohta, M., Suwan, S., Ohtani, I., and Isobe, M. (1994) A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus vacuole formation in HEp-2 cells. FEMS Microbiol. Lett. 121, 31-34.
  2. Agata, N., Ohta, M., Mori, M., and Isobe, M. (1995) A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 129, 17-20.
  3. Andersson, A., Ronner, U., and Granum, P. E. (1995) What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28, 145-155. https://doi.org/10.1016/0168-1605(95)00053-4
  4. Aviram, M. and Fuhrman, B. (2002) Wine flavonoids protect against LDL oxidation and atherosclerosis. Ann. NY Acad. Sci. 957, 146-161. https://doi.org/10.1111/j.1749-6632.2002.tb02913.x
  5. Borge, G. I. A., Skeie, M., Sorhaug, T., Langsrud, T., and Granum, P. E. (2001) Growth and toxin profiles of Bacillus cereus isolated from different food sources. Int. J. Food Microbiol. 69, 237-246. https://doi.org/10.1016/S0168-1605(01)00500-1
  6. Bosetti, C., Spertini, L., Parpinel, M., Gnagnarella, P., Lagiou, P., Negri, E., Franceschi, S., Montella, M., Peterson, J., Dwyer, J., Giacosa, A., and La, V. C. (2005) Flavonoids and breast cancer risk in Italy. Cancer Epidemiol. Biomarkers Prev. 14, 805-808. https://doi.org/10.1158/1055-9965.EPI-04-0838
  7. Dufrenne, J., Soentoro, P., Tatini, S., Day, T., and Notermans, S. (1994) Characteristics of Bacillus cereus related to safe food production. Int. J. Food Microbiol. 23, 99-109. https://doi.org/10.1016/0168-1605(94)90225-9
  8. Granum, P. E. (2001) Bacillus cereus. In: Doyle, M.P., Beuchat, L. R., and Montville, T. J. (eds.) Food Microbiology. Fundamentals and Applications, 2nd ed, ASM Press, Washington, DC. 373-381.
  9. Granum, P. E. and Lund, T. (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157, 223-228. https://doi.org/10.1111/j.1574-6968.1997.tb12776.x
  10. Griffiths, M. W. and Phillips, J. D. (1990) Incidence, source and some properties of psychrotrophic Bacillus spp. found in raw and pasteurized milk. Int. J. Dairy Technol. 43, 62-66 https://doi.org/10.1111/j.1471-0307.1990.tb02446.x
  11. Hong, X. X. and Lee, S. F. (2001) Activity of plant flavonoids against antibiotic resistant bacteria. Phytother. Res. 15, 39-43. https://doi.org/10.1002/1099-1573(200102)15:1<39::AID-PTR684>3.0.CO;2-R
  12. Joshipura, K. J., Ascherio, A., Manson, J. E., Stampfer, M. J., Rimm, E. B., Speizer, F. E., Hennekens, C. H., Spiegelman, D., and Willett, W. C. (1999) Fruit and vegetable intake in relation to risk of ischemic stroke. J. Am. Med. Assoc. 282, 1233-1239. https://doi.org/10.1001/jama.282.13.1233
  13. Kim, K.-T. and Paik, H.-D. (2008) Propolis as a multi-functional natural material for health. In: Natural products as future medicinal agents. Hawthorne S. (ed) Transworld Research Network, Kerala, India. pp. 33-48.
  14. Kim, K.-T., Yeo, E. J., Han, Y. S., Nah, S. Y., and Paik, H.-D. (2005) Antimicrobial, anti-inflammatory, and anti-oxidative effect of water and ethanol extracted Brazilian propolis. Food Sci. Biotechnol. 14, 474-478.
  15. Lee, Y. J., Kim, B. G., Park, Y. H., Lim, Y. H., Hur, H. G., and Ahn, J. H. (2006) Biotransformation of flavonoids with Omethytransferase from Bacillus cereus. J. Microbiol. Biotechnol. 16, 1090-1096.
  16. Lin, S., Schraft, H., Odumeru, J. A., and Griffiths, M. W. (1998) Identification of contamination sources of Bacillus cereus in pasteurized milk. Int. J. Food Microbiol. 43, 159-171. https://doi.org/10.1016/S0168-1605(98)00105-6
  17. Little, C. L. and Knochel, S. (1994) Growth and survival of Yersinia enterocolitica, Salmonella and Bacillus cereus in brie stored at 4, 8 and 20${^{\circ}C}$. Int. J. Food Microbiol. 24, 137-145. https://doi.org/10.1016/0168-1605(94)90113-9
  18. Martini, N. D., Katerere, D. R. P., and Eloff, J. N. (2004) Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J. Ethnopharmacol. 93, 207-212. https://doi.org/10.1016/j.jep.2004.02.030
  19. Negi, P., John, S. K., and Rao, P. U. (2002) Antimicrobial activity of mango sap. Eur. Food Res. Technol. 214, 327-330. https://doi.org/10.1007/s00217-001-0485-7
  20. Netten, P., Moosdijk. A., Hoensel, P., Mossel, D. A., and Perales, I. (1990) Psychrotrophic strains of Bacillus cereus producing enterotoxin. J. Appl. Bacteriol. 69, 73-79. https://doi.org/10.1111/j.1365-2672.1990.tb02913.x
  21. Osawa, K., Yasuda, H., Maruyama, T., Morita, H., Takeya, K., and Itokawa, H. (1992) Isoflavanones from the heartwood of Swartzia polyphylla and their antibacterial activity against cariogenic bacteria. Chem. Pharm. Bull. (Tokyo) 40, 2970-2974. https://doi.org/10.1248/cpb.40.2970
  22. Palombo, E. A. and Semple, S. J. (2001) Antibacterial activity of traditional Australian medical plants. J. Ethnopharmacol. 77, 151-157. https://doi.org/10.1016/S0378-8741(01)00290-2
  23. Rowan, N. J. and Anderson, J. G. (1998) Diarrhoeal enterotoxin production by psychrotrophic Bacillus cereus present in reconstituted milk-based infant formulae (MIF). Lett. Appl. Microbiol. 26, 161-165. https://doi.org/10.1046/j.1472-765X.1998.00301.x
  24. Son, D. J., Lee, S. E., and Park, B. S. (2003) Inhibitory effects of naturally occurring flavonoids on a human intestinal bacterium, Clostridium botulinum. Food Sci. Biotechnol. 12, 180-182.
  25. Tim, C. T. P. and Lamb, A. J. (2005) Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  26. Vuuren, S. F. (2008) Antimicrobial activity of South African medicinal plants. J. Ethnopharmacol. 119, 462-472. https://doi.org/10.1016/j.jep.2008.05.038
  27. Yokoyama, K., Ito, M., Agata, N., Isobe, M., Shibayama, K., Horii, T., and Ohta, M. (1999) Pathological effect of synthetic cereulide, an emetic toxin of Bacillus cereus is reversible in mice. FEMS Immunol. Med. Microbiol. 24, 115-120. https://doi.org/10.1111/j.1574-695X.1999.tb01272.x

Cited by

  1. Antimicrobial activity of kaempferol and resveratrol in binary combinations with parabens or propyl gallate against Enterococcus faecalis vol.61, 2016, https://doi.org/10.1016/j.foodcont.2015.10.001
  2. Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems vol.36, pp.4, 2016, https://doi.org/10.5851/kosfa.2016.36.4.547