DOI QR코드

DOI QR Code

Analysis of Various Honeys from Different Sources Using Electronic Nose

다른 밀원에서 기원한 꿀의 전자코 분석

  • Hong, Eun-Jeung (Department of Food Science and Technology, Seoul Women's University) ;
  • Park, Sue-Jee (Department of Food Science and Technology, Seoul Women's University) ;
  • Lee, Hwa-Jung (National Institute of Food and Drug Safety Evaluation) ;
  • Lee, Kwang-Geun (Department of Food Science and Technology, Dongguk University) ;
  • Noh, Bong-Soo (Department of Food Science and Technology, Seoul Women's University)
  • 홍은정 (서울여자대학교 식품공학과) ;
  • 박수지 (서울여자대학교 식품공학과) ;
  • 이화정 (식품의약품안전평가원 식품감시과학팀) ;
  • 이광근 (동국대학교 식품공학과) ;
  • 노봉수 (서울여자대학교 식품공학과)
  • Received : 2010.12.23
  • Accepted : 2011.03.25
  • Published : 2011.04.30

Abstract

Various honeys from different sources were analyzed using an electronic nose based on a mass spectrometer. Various honeys were separated with different mixing ratios. Wild honey and artificial honey were blended at ratios of 100:0, 95:5, 90:10, 85:15, 80:20, 75:25, and 70:30, respectively. Data obtained from the electronic nose were used for discriminant function analysis (DFA). The DFA plot indicated a significant separation of honey from different sources. As the concentration of artificial honey increased, the first discriminant function score (DF1) moved from positive to negative (DF1: $r^2$=0.9962, F=490.6; DF2: $r^2$=0.9128, F=19.44). Furthermore, when acacia honey was mixed with artificial honey and separated with the mixing ratios, the DF scores were: DF1: $r^2$=0.9957, F=396.64; DF2: $r^2$=0.9447, F=29.3. When artificial honey was added to wild honey, it was possible to predict the following equation; DF1= -0.106${\times}$(concentration of artificial honey)+0.426 ($r^2$= 0.96). For acacia honey, the DF1= -0.112${\times}$(concentration of artificial honey)+0.434 ($r^2$=0.968).

전자코를 이용하여 아카시아 꿀, 잡화 꿀, 밤 꿀, 유채꿀, 사양 꿀, 목청 꿀, 기타 꿀을 대상으로 밀원에 따른 차이를 구분하였다. 그 결과 꿀 종류에 따라 뚜렷이 구분 가능하였으며 각기 다른 꿀을 혼합하였을 때 혼합 비율에 따라서도 구분 가능하였다. 0, 5, 10, 15, 20, 25, 30%의 사양 꿀을 목청 꿀에 혼합하였을 때 혼합비율이 증가함에 따라 41, 42, 43, 45, 46, 47, 48, 54, 56, 58, 60 amu의 감응도 값이 크게 나타났으며 판별함수분석한 결과 사양 꿀의 혼합비율이 증가함에 따라 DF1값이 양의 방향에서 음의 방향으로 일정한 경향을 보이며 뚜렷이 구분되었다(DF1: $r^2$=0.9962, F=490.6 DF2: $r^2$=0.9128, F=19.44). 이를 통하여 DF1값과 목청 꿀에 사양 꿀의 혼합 농도에 대해 DF1=-0.106$^*$(사양 꿀의 농도)+0.426($r^2$=0.96)와 같은 높은 상관관계식을 얻었다. 아카시아 꿀의 경우에도 목청 꿀과 유사하게 사양 꿀의 혼합비율이 증가함에 따라 41, 43, 45, 46, 47, 56, 57, 58, 59, 60, 61, 70 amu의 감응도 값이 크게 나타났으며 DF1과 사양 꿀 혼합 비율간에 높은 상관관계를 보이며 일정한 경향을 나타냈고(DF1: $r^2$=0.9957, F=396.64 DF2: $r^2$=0.9447, F=29.3) DF1=-0.112$^*$(사양 꿀의 농도)+0.434($r^2$=0.968)의 상관관계식을 갖는다.

Keywords

References

  1. Chung, W. C., Kim, M. W., Song, K. J., and Choi, E. H. (1984) Chemical composition in relation to quality evaluation of Korean honey. Korean J. Food Sci. Technol. 16, 17-22.
  2. Hawer, W. D., Ha, J. H., and Nam, Y. J. (1992) The quality assessment of honey by stable carbon isotope analysis. Anal. Sci. Technol. 5, 229-234.
  3. Hong, E. J. and Noh, B. S. (2010) Analysis of melamine in the added melamine foods using electronic nose based on mass spectrometer. Korean J. Food Sci. Technol. 42, 676-681.
  4. Hong, E. J., Noh, B. S., and Park, S. Y. (2010a) Analysis of the different heated milks using electronic nose. Korean J. Food Sci. Ani. Resour. 30, 851-859. https://doi.org/10.5851/kosfa.2010.30.5.851
  5. Hong, E. J., Son, H. J., Choi, J. Y., and Noh, B. S. (2010b) Authentication of rapeseed oil using electronic nose based on mass spectrometer. Korean J. Food Sci. Technol. 43, 105-109.
  6. Kim, B. N., Kim, T. J., and Cheigh, H. S. (1994) Minerals, HMF and vitamins of honey harvested in kangwon area. J. Korean Soc. Food Nutr. 23, 675-679.
  7. Kim, E. S. and Rhee, C. O. (1995) Analysis and quantitation of Di-and trisaccharides in native-bee honeys using capillary gas chromatography. Korean J. Food Sci. Technol. 27, 605-611.
  8. Kim, E. S. and Rhee, C. O. (1996) Comparison of quality attributes of Korean native-bee honey and foreign-bee honey by K/Na ratio. J. Korean Soc. Food. Sci. Nutr. 25, 672-679.
  9. Kim, H. K. (1987) Variations and changes in chemical compositions, value of diastase numbers and amount of HMF in the Korean honey sources. Korean J. Apiculture 2, 59-66.
  10. Korea Food and Drug Administration. (2007) Food Code. Korean Foods Industry Association, Seoul, Korea, 505-510.
  11. Kushnir, I. (1979) Sugars and sugar products: Sensitive thin layer chromatographic detection of high fructose corn syrup and other adulterants in honey. J. Assoc. Anal. Chem. 62, 917-920.
  12. Lammertyn, J., Veraverbeke, E. A., and Inudayaraj, O. (2004) J. $zNose^{TM}$ technology for the classification of honey based on rapid aroma profiling. Sens. Actuators B Chem. 98, 54-62. https://doi.org/10.1016/j.snb.2003.09.012
  13. Lee, D. C. (1998) Characterization of native bee-honey and foreign bee-honey and It's application to distinction. MS thesis, Chuncheon National University, Chuncheon, Korea.
  14. Lee, D. C., Lee, S. Y., Cha, S. H., Choi, Y. S., and Rhee, H. I. (1998). Discrimination of native bee-honey and foreign beehoney by SDS-PAGE. Korean J. Food Sci. Technol. 30, 1-5.
  15. Lee, Y. G., Min, B. U., and Lim, S. U. (1991) Comparative study on some quality-related components of different floral honeys -esp. on the contents of unsaturated higher fatty acids-. J. Korean Agric. Chem. Soc. 34, 102-109.
  16. Son, H. J., Kang, J. H., Hong, E. J., Lim, C. L., Choi, J. Y., and Noh, B. S. (2009) Authentication of sesame oil with addition of perilla oil using electronic nose based on mass spectrometry. Korean J. Food Sci. Technol. 41, 609-614.
  17. White, J. W. (1990) Detection of honey adulteration by carbohydrate analysis. J. Assoc. Chem. 63, 11-18.
  18. White, J. W., Riethof, M. L., and Kushnir, L. (1960) Composition of honey. VI. The effect of storage on carbohydrates acidity and diastase content. J. Food Sci. 26, 63-71.
  19. Won, S. R. (2004) Discrimination of native bee honey by molecular biological method. Master's thesis, Gangwon National University, Chuncheon, Korea.
  20. Yoon, J. H., Bae, S. Y., Kim, K., and Lee, D. S. (1997) Chemometric aspects and determination of sugar composition of honey by HPLC. Anal. Sci. Technol. 10, 362-369.

Cited by

  1. Analysis of Gel Powders Created from Different Acorn Crude Starches to Determine Country of Origin vol.41, pp.6, 2012, https://doi.org/10.3746/jkfn.2012.41.6.816
  2. Electronic Nose Analysis of Ethanol in Gochujang for Halal Food Certification vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.193
  3. Discrimination Analysis of the Geographical Origin of Foods vol.44, pp.5, 2012, https://doi.org/10.9721/KJFST.2012.44.5.503
  4. Application of Electronic Nose with Multivariate Analysis and Sensor Selection for Botanical Origin Identification and Quality Determination of Honey vol.8, pp.2, 2015, https://doi.org/10.1007/s11947-014-1407-6
  5. Analysis of ethanol in soy sauce using electronic nose for halal food certification vol.26, pp.2, 2017, https://doi.org/10.1007/s10068-017-0042-1