DOI QR코드

DOI QR Code

Evaluation of Compressibility for Normally Consolidated South-east Coast Clay Using CPT and DMT

CPT와 DMT를 이용한 남동해안 정규압밀 점토의 압축성 추정

  • 홍성진 (고려대학교 건축.사회환경공학부) ;
  • 채영호 (고려대학교 건축.사회환경공학부) ;
  • 이문주 (한화건설) ;
  • 이우진 (고려대학교 건축.사회환경공학부)
  • Received : 2010.10.21
  • Accepted : 2011.04.14
  • Published : 2011.04.30

Abstract

A series of in-situ and laboratory tests were performed for the clayey soils of Busan area in order to develop the methods to evaluate the compressibility using CPT and DMT results. The laboratory tests show that the clayey layers of Busan areas are normally consolidated, and their compression indices are turned out to be 0.5~1.3. From the analysis of test results, correlation factors between the cone resistance and constrained modulus (${\alpha}_m$ and ${\alpha}_n$) are observed to decrease with increasing plasticity index, and the correlation factor between the dilatometer modulus and constrained modulus $(R_M)$ increases with $1/I_D$. Based on these relationships, the methods evaluating the constrained modulus from CPT and DMT results are suggested. It is shown that the prediction method by CPT underestimates the constrained modulus of improved ground, whereas the prediction method by DMT is suitable for evaluating the constrained modulus of improved and unimproved ground.

본 연구는 CPT와 DMT를 이용한 부산지역 점토 압축성 추정에 관한 것으로, 이를 위해 부산신항과 녹산점토에 대해 현장시험 및 실내시험을 수행하였다. 압밀시험 결과 부산신항 및 녹산 점토는 정규압밀점토이며, 압축지수는 0.5~1.3로 나타났다. 분석결과에 의하면 콘저항치와 횡방향구속 변형계수의 상관계수인 ${\alpha}_m$${\alpha}_n$은 소성지수에 따라 감소하였으며, 딜라토미터 계수와 횡방향구속 변형계수의 상관계수 $R_M$$1/I_D$에 따라 증가하였다. 본 연구에서는 이러한 관계를 이용하여 횡방향구속 변형계수를 추정하는 방법을 제안하였다. 제안된 방법으로 횡방향구속 변형계수를 추정한 결과 CPT 추정방법은 개량 후 지반의 횡방향구속 변형계수를 과소평가한 반면, DMT 추정방법은 개량 전 후 지반 모두 횡방향구속 변형계수를 적절히 추정하였다.

Keywords

References

  1. 김상규, 김윤태 (2006), "낙동강 하구 델타 퇴적토의 특성과 기초 설계와의 관련", 낙동강하구 연약 지반에서의 중.저층 빌딩의 최적 기초형식에 관한 Workshop 논문집, ATC-7, Seoul, Korea, pp. 19-101.
  2. 이선재 (1997), 피에조콘을 이용한 국내 지반공학의 공학적 특성 연구, 공학박사 학위논문, 서울대학교.
  3. 홍성진, 이문주, 김태준, 이우진 (2009), "간극수압비를 이용한 부산점토의 CPTu 콘계수 추정", 한국지반공학회논문집, 25권 1호 pp.77-88.
  4. Campanella, R.G. and Robertson, P.K. (1982), "State-of-the Art in In-situ Testing of Soils: Development since 1978", Proc. Engineering Foundation Conf. on Updating Subsurface Sampling of Soils and Rocks and Their In-situ Testing, Santa Barbara, California, pp. 245-267.
  5. Chung, S. G., Giao, P.H., Kim, G. J. and Leroueil, S. (2002). Geotechnical properties of Pusan clays, Canadian Geotechnical Journal, Vol.39, No.5:.1050-1060. https://doi.org/10.1139/t02-055
  6. Cruz, N., Devincenzi, M.J. and Fonseca, A.V. (2006), "DMT Experience in Iberian Transported Soils", Proc. 2nd International Conf. the Flat Dilatometer, Washington, D.C., pp.198-204.
  7. Iwasaki, K., Tsuchiya, H., Sakai, Y. and Yamamoto, Y. (1991), "Applicability of the Marchetti Dilatometer Test to Soft Ground in Japan", GEOCOAST 91, Yokohama, pp.1/6.
  8. Janbu, N. (1963), "Soil Compressibility as Determined by Oedometer and Triaxial Tests", Proc. European Conf. Soil Mechanic and Foundation Engineering, Wiesbaden, Vol.1, pp.19-25.
  9. Jones, G.A. and Rust, E. (1995), "Piezometer Settlement Prediction Parameters for Embankments on Alluvium", Proc. International Symposium on Cone Penetration Testing, Sweden, Vol.2, pp.501-508.
  10. Kulhawy, F.H. and Mayne, P.H. (1990), Manual on Estimating Soil Properties for Foundation Design, Electric Power Research Institute, Palo Alto, California, Report EL.6800.
  11. Lim, H. D, Lee, C. H. and Lee W. J. (2003), Geotechnical Characteristics of Yangsan Clay, Proc. Korea-Japan Joint Workshop: Characterization of Thick Clay Deposit, Reclamation and Port Construction, ATC-7: pp.59-70.
  12. Lunne, T., Robertson, P.K. and Powel, J.J.M. (1997), Cone Penetration Testing in Geotechnical Practice, Blackie Academic &Professional, London.
  13. Lutenegger, A.J. (1988), "Current Status of the Marchetti Dilatometer Test", Proc. ISOPT-I, Orlando, Florida, Vol.1, pp.137-155.
  14. Marchetti, S. (1980), "In-situ Tests by Flat Dilatometer", J. Geotechnical Engineering, ASCE, Vol.106, No.3, pp.299-321.
  15. Marchetti, S. and Crapps, D.K. (1981), Flat Dilatometer Manual, Internal Report of G.P.E. Inc.
  16. Marchetti, S., Monaco, P., Totani, G. and Calabrese, M. (2001), "The Flat Dilatometer Test in Soil Investigations", A report by the ISSMGE Committee TC 16, Proc. International Conf. on In-situ Measurement of Soil Properties, Bali, pp.1-41.
  17. Marchetti, S. (2006), "Origin of the Flat Dilatometer", Proc. 2nd International Conf. the Flat Dilatometer, Washington, D.C., pp.2-5.
  18. Mayne, P.W. (2001), "Stress-Strain-Strength-Flow Parameters from Enhanced In-situ Tests", Proc. International Conf. on In-situ Measurement of Soil Properties, Bali, pp.27-47.
  19. Monaco, P., Totani, G. and Calabrese, M. (2006), "DMT-Predicted vs. Observed Settlements: A Review of the Available Experience", Proc. 2nd International Conf. the Flat Dilatometer, Washington, D.C., pp.242-252.
  20. Robertson, P.K. (1990), "Soil Classification using the Cone Penetration Test", Canadian Geotechnical Journal, Vol.27, No.1, pp.151-158. https://doi.org/10.1139/t90-014
  21. Robertson, P.K. (2009), "CPT-DMT Correlations", J. Geotechnical & Geoenvironmental Engineering, ASCE, Vol.135, No.11, pp.1762-1771. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000119
  22. Sanglerat, G. (1972), The Penetrometer and Soil Exploration, Elsevier, Amsterdam, pp.464.
  23. Schmertmann, J.H. (1955), "The Undisturbed Consolidation Behavior of Clay", Trans. ASCE, Vol.120, pp.1201-1233.
  24. Senneset, K., Sandven, R. and Janbu, N. (1989), The Evaluation of Soil Parameters from Piezocone Tests, Transportation Research Record, No.1235, pp.24-37.

Cited by

  1. Analysis of load-settlement behaviour of shallow foundations in saturated clays based on CPT and DPT tests vol.13, pp.1, 2011, https://doi.org/10.12989/gae.2017.13.1.119