DOI QR코드

DOI QR Code

Matrix Metalloproteinase Inhibitors Attenuate Neuroinflammation Following Focal Cerebral Ischemia in Mice

  • Park, Cheol-Hong (Department of Pharmacology, and Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine) ;
  • Shin, Tae-Kyeong (Department of Pharmacology, and Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine) ;
  • Lee, Ho-Youn (Department of Pharmacology, and Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine) ;
  • Kim, So-Jung (Department of Pharmacology, and Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine) ;
  • Lee, Won-Suk (Department of Pharmacology, and Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine)
  • Received : 2011.04.10
  • Accepted : 2011.04.20
  • Published : 2011.04.30

Abstract

The aim of this study was to investigate whether matrix metalloproteinase (MMP) inhibitors attenuate neuroinflammation in an ischemic brain following photothrombotic cortical ischemia in mice. Male C57BL/6 mice were anesthetized, and Rose Bengal was systemically administered. Permanent focal ischemia was induced in the medial frontal and somatosensory cortices by irradiating the skull with cold white light. MMP inhibitors, such as doxycycline, minocycline, and batimastat, significantly reduced the cerebral infarct size, and the expressions of monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and indoleamine 2,3-dioxygenase (IDO). However, they had no effect on the expressions of heme oxygenase-1 and neuroglobin in the ischemic cortex. These results suggest that MMP inhibitors attenuate ischemic brain injury by decreasing the expression levels of MCP-1, TNF-${\alpha}$, and IDO, thereby providing a therapeutic benefit against cerebral ischemia.

Keywords

References

  1. Denes A, Thornton P, Rothwell NJ, Allan SM. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun. 2010;24:708-723. https://doi.org/10.1016/j.bbi.2009.09.010
  2. Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;7:97. https://doi.org/10.1186/1479-5876-7-97
  3. Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia. 2002;39:279-291. https://doi.org/10.1002/glia.10108
  4. Mun-Bryce S, Rosenberg GA. Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab. 1998;18: 1163-1172. https://doi.org/10.1097/00004647-199811000-00001
  5. Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab. 2000;20:1681-1689. https://doi.org/10.1097/00004647-200012000-00007
  6. Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH. Matrix metalloproteinase inhibition prevents oxidative stressassociated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2001;21: 1393-1400. https://doi.org/10.1097/00004647-200112000-00003
  7. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke. 1998;29:1020-1030. https://doi.org/10.1161/01.STR.29.5.1020
  8. Wang X, Yue TL, Barone FC, Feuerstein GZ. Monocyte chemoattractant protein-1 messenger RNA expression in rat ischemic cortex. Stroke. 1995;26:661-665. https://doi.org/10.1161/01.STR.26.4.661
  9. Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, Vogel SN. Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab. 2003;23:748-755. https://doi.org/10.1097/01.WCB.0000071885.63724.20
  10. Minami M, Satoh M. Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury. Life Sci. 2003;74:321-327. https://doi.org/10.1016/j.lfs.2003.09.019
  11. Conductier G, Blondeau N, Guyon A, Nahon JL, Rovère C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol. 2010;224:93-100. https://doi.org/10.1016/j.jneuroim.2010.05.010
  12. Sriram K, O'Callaghan JP. Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol. 2007;2: 140-153. https://doi.org/10.1007/s11481-007-9070-6
  13. Brenner DA, O'Hara M, Angel P, Chojkier M, Karin M. Prolonged activation of jun and collagenase genes by tumour necrosis factor-alpha. Nature. 1989;337:661-663. https://doi.org/10.1038/337661a0
  14. Hanemaaijer R, Koolwijk P, le Clercq L, de Vree WJ, van Hinsbergh VW. Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells. Effects of tumour necrosis factor alpha, interleukin 1 and phorbol ester. Biochem J. 1993;296:803-809. https://doi.org/10.1042/bj2960803
  15. Gong C, Qin Z, Betz AL, Liu XH, Yang GY. Cellular localization of tumor necrosis factor alpha following focal cerebral ischemia in mice. Brain Res. 1998;801:1-8. https://doi.org/10.1016/S0006-8993(98)00489-2
  16. Yang GY, Gong C, Qin Z, Liu XH, Lorris Betz A. Tumor necrosis factor alpha expression produces increased blood-brain barrier permeability following temporary focal cerebral ischemia in mice. Brain Res Mol Brain Res. 1999;69:135-143. https://doi.org/10.1016/S0169-328X(99)00007-8
  17. Crowley JS, Markey SP, Heyes MP. Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation. J Neurochem. 1993;61:2061-2070. https://doi.org/10.1111/j.1471-4159.1993.tb07443.x
  18. Heyes MP, Saito K, Jacobowitz D, Markey SP, Takikawa O, Vickers JH. Poliovirus induces indoleamine-2,3-dioxygenase and quinolinic acid synthesis in macaque brain. FASEB J. 1992;6:2977-2989. https://doi.org/10.1096/fasebj.6.11.1322853
  19. Heyes MP, Saito K, Devinsky O, Nadi NS. Kynurenine pathway metabolites in cerebrospinal fluid and serum in complex partial seizures. Epilepsia. 1994;35:251-257. https://doi.org/10.1111/j.1528-1157.1994.tb02428.x
  20. Sanni LA, Thomas SR, Tattam BN, Moore DE, Chaudhri G, Stocker R, Hunt NH. Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and noncerebral malaria. Am J Pathol. 1998;152: 611-619.
  21. Cozzi A, Carpenedo R, Moroni F. Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)- alanine (mNBA) and 3,4-dimethoxy-[-N-4-(nitrophenyl) thiazol-2yl]-benzenesulfonamide (Ro 61-8048) in models of focal or global brain ischemia. J Cereb Blood Flow Metab. 1999; 19:771-777. https://doi.org/10.1097/00004647-199907000-00007
  22. Marks GS, Brien JF, Nakatsu K, McLaughlin BE. Does carbon monoxide have a physiological function? Trends Pharmacol Sci. 1991;12:185-188. https://doi.org/10.1016/0165-6147(91)90544-3
  23. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517- 554. https://doi.org/10.1146/annurev.pharmtox.37.1.517
  24. Geddes JW, Pettigrew LC, Holtz ML, Craddock SD, Maines MD. Permanent focal and transient global cerebral ischemia increase glial and neuronal expression of heme oxygenase-1, but not heme oxygenase-2, protein in rat brain. Neurosci Lett. 1996;210:205-208. https://doi.org/10.1016/0304-3940(96)12703-8
  25. Panahian N, Yoshiura M, Maines MD. Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem.1999;72:1187-1203.
  26. Fu R, Zhao ZQ, Zhao HY, Zhao JS, Zhu XL. Expression of heme oxygenase-1 protein and messenger RNA in permanent cerebral ischemia in rats. Neurol Res. 2006;28:38-45. https://doi.org/10.1179/016164106X91852
  27. Burmester T, Weich B, Reinhardt S, Hankeln T. A vertebrate globin expressed in the brain. Nature. 2000;407:520-523. https://doi.org/10.1038/35035093
  28. Sun Y, Jin K, Mao XO, Zhu Y, Greenberg DA. Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci U S A. 2001;98:15306-15311. https://doi.org/10.1073/pnas.251466698
  29. Sun Y, Jin K, Peel A, Mao XO, Xie L, Greenberg DA. Neuroglobin protects the brain from experimental stroke in vivo. Proc Natl Acad Sci U S A. 2003;100:3497-3500. https://doi.org/10.1073/pnas.0637726100
  30. Schroeter M, Jander S, Stoll G. Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses. J Neurosci Methods. 2002;117:43-49. https://doi.org/10.1016/S0165-0270(02)00072-9
  31. Shin TK, Kang MS, Lee HY, Seo MS, Kim SG, Kim CD, Lee WS. Fluoxetine and sertraline attenuate postischemic brain injury in mice. Korean J Physiol Pharmacol. 2009;13:257-263. https://doi.org/10.4196/kjpp.2009.13.3.257
  32. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986;17:1304-1308. https://doi.org/10.1161/01.STR.17.6.1304
  33. Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ. Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab. 2007;27:1213-1224. https://doi.org/10.1038/sj.jcbfm.9600432
  34. Muir KW, Tyrrell P, Sattar N, Warburton E. Inflammation and ischaemic stroke. Curr Opin Neurol. 2007;20:334-342. https://doi.org/10.1097/WCO.0b013e32813ba151
  35. del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab. 2003;23:879-894. https://doi.org/10.1097/01.WCB.0000078322.96027.78
  36. Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL Jr, del Zoppo GJ. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke. 2004;35:998-1004. https://doi.org/10.1161/01.STR.0000119383.76447.05
  37. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 2002;37:375-536. https://doi.org/10.1080/10409230290771546
  38. Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia. 2005;50:329-339. https://doi.org/10.1002/glia.20169
  39. Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke. 2003; 34:2165-2170. https://doi.org/10.1161/01.STR.0000088062.86084.F2
  40. Rosell A, Ortega-Aznar A, Alvarez-Sabín J, Fernández-Cadenas I, Ribó M, Molina CA, Lo EH, Montaner J. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke. 2006;37:1399-1406. https://doi.org/10.1161/01.STR.0000223001.06264.af
  41. Hamann GF, Okada Y, Fitridge R, del Zoppo GJ. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke. 1995;26:2120-2126. https://doi.org/10.1161/01.STR.26.11.2120
  42. Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 1996;739:88-96. https://doi.org/10.1016/S0006-8993(96)00815-3
  43. Kamada H, Yu F, Nito C, Chan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood-brain barrier dysfunction. Stroke. 2007;38:1044-1049. https://doi.org/10.1161/01.STR.0000258041.75739.cb
  44. Thornton P, Pinteaux E, Allan SM, Rothwell NJ. Matrix metalloproteinase-9 and urokinase plasminogen activator mediate interleukin-1-induced neurotoxicity. Mol Cell Neurosci. 2008;37:135-142. https://doi.org/10.1016/j.mcn.2007.09.002
  45. McColl BW, Rothwell NJ, Allan SM. Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci. 2008;28:9451- 9462. https://doi.org/10.1523/JNEUROSCI.2674-08.2008
  46. Golub LM, Lee HM, Ryan ME, Giannobile WV, Payne J, Sorsa T. Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res. 1998; 12:12-26. https://doi.org/10.1177/08959374980120010501
  47. Wojtowicz-Praga SM, Dickson RB, Hawkins MJ. Matrix metalloproteinase inhibitors. Invest New Drugs. 1997;15:61-75. https://doi.org/10.1023/A:1005722729132
  48. Koistinaho M, Malm TM, Kettunen MI, Goldsteins G, Starckx S, Kauppinen RA, Opdenakker G, Koistinaho J. Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab. 2005;25:460-467. https://doi.org/10.1038/sj.jcbfm.9600040
  49. Baggiolini M. Chemokines and leukocyte traffic. Nature. 1998;392:565-568. https://doi.org/10.1038/33340
  50. Furie MB, Randolph GJ. Chemokines and tissue injury. Am J Pathol. 1995;146:1287-1301.
  51. Kim JS, Gautam SC, Chopp M, Zaloga C, Jones ML, Ward PA, Welch KM. Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 after focal cerebral ischemia in the rat. J Neuroimmunol. 1995;56:127-134. https://doi.org/10.1016/0165-5728(94)00138-E
  52. Che X, Ye W, Panga L, Wu DC, Yang GY. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res. 2001;902:171-177. https://doi.org/10.1016/S0006-8993(01)02328-9
  53. Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab. 2002;22:308-317. https://doi.org/10.1097/00004647-200203000-00008
  54. Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke. 2007;38: 1345-1353. https://doi.org/10.1161/01.STR.0000259709.16654.8f
  55. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009;276:13-26. https://doi.org/10.1111/j.1742-4658.2008.06766.x
  56. Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, Lysko PG, Feuerstein GZ. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke. 1997;28:1233- 1244. https://doi.org/10.1161/01.STR.28.6.1233
  57. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL, Leber TM, Mangan M, Miller K, Nayee P, Owen K, Patel S, Thomas W, Wells G, Wood LM, Woolley K. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature. 1994;370:555-557. https://doi.org/10.1038/370555a0
  58. Dittmar M, Kiourkenidis G, Horn M, Bollwein S, Bernhardt G. Cerebral ischemia, matrix metalloproteinases, and TNFalpha: MMP inhibitors may act not exclusively by reducing MMP activity. Stroke. 2004;35:e338-340. https://doi.org/10.1161/01.STR.0000135294.08862.5d
  59. Mayhan WG. Cellular mechanisms by which tumor necrosis factor-alpha produces disruption of the blood-brain barrier. Brain Res. 2002;927:144-152. https://doi.org/10.1016/S0006-8993(01)03348-0
  60. Nemeth H, Toldi J, Vécsei L. Kynurenines, Parkinson's disease and other neurodegenerative disorders: preclinical and clinical studies. J Neural Transm Suppl. 2006;70:285-304.
  61. Mackay GM, Forrest CM, Stoy N, Christofides J, Egerton M, Stone TW, Darlington LG. Tryptophan metabolism and oxidative stress in patients with chronic brain injury. Eur J Neurol. 2006;13:30-42.
  62. Gregersen R, Lambertsen K, Finsen B. Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab. 2000;20:53-65. https://doi.org/10.1097/00004647-200001000-00009
  63. Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara K, Yagita Y, Yanagihara T, Hori M, Matsumoto M. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke. 2000;31:1735-1743. https://doi.org/10.1161/01.STR.31.7.1735
  64. Gehrmann J, Bonnekoh P, Miyazawa T, Hossmann KA, Kreutzberg GW. Immunocytochemical study of an early microglial activation in ischemia. J Cereb Blood Flow Metab. 1992; 12:257-269. https://doi.org/10.1038/jcbfm.1992.36
  65. Otterbein LE, Choi AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1029-1037. https://doi.org/10.1152/ajplung.2000.279.6.L1029
  66. Ryter SW, Otterbein LE, Morse D, Choi AM. Heme oxygenase/ carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem. 2002;234-235:249-263.
  67. Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, Choi AM. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem. 1997;272:5375-5381. https://doi.org/10.1074/jbc.272.9.5375

Cited by

  1. Minocycline: far beyond an antibiotic : Minocycline: far beyond an antibiotic vol.169, pp.2, 2011, https://doi.org/10.1111/bph.12139
  2. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases vol.2015, pp.None, 2011, https://doi.org/10.1155/2015/620581
  3. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration vol.12, pp.None, 2015, https://doi.org/10.1186/s12974-015-0431-4
  4. Tolerogenic dendritic cells are efficiently generated using minocycline and dexamethasone vol.7, pp.None, 2011, https://doi.org/10.1038/s41598-017-15569-1
  5. Monoacylglycerol Lipase Inhibitors Reverse Paclitaxel-Induced Nociceptive Behavior and Proinflammatory Markers in a Mouse Model of Chemotherapy-Induced Neuropathy vol.366, pp.1, 2011, https://doi.org/10.1124/jpet.117.245704
  6. Photothrombotic Stroke as a Model of Ischemic Stroke vol.9, pp.5, 2011, https://doi.org/10.1007/s12975-017-0593-8
  7. Filling the gaps on stroke research: Focus on inflammation and immunity vol.91, pp.None, 2011, https://doi.org/10.1016/j.bbi.2020.09.025
  8. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype vol.131, pp.None, 2011, https://doi.org/10.1016/j.neubiorev.2021.09.018