DOI QR코드

DOI QR Code

How Sensitive is the Earth Climate to a Runaway Carbon Dioxide?

기후는 이산화탄소 증가에 얼마나 민감한가?

  • Choi, Yong-Sang (Department of Environmental Science and Engineering, Ewha Womans University)
  • 최용상 (이화여자대학교 환경공학과)
  • Received : 2010.12.07
  • Accepted : 2011.01.24
  • Published : 2011.04.29

Abstract

The United Nations Framework Convention on Climate Change and the corresponding national low-carbon policy should be grounded on the scientific understanding of climate sensitivity to the increase in CO2 concentration. This is, however, precluded by the fact that current estimates of the climate sensitivity highly vary. To understand the scientific background, limitations, and prospects of the climate sensitivity study, this paper reviews, as objectively as possible, the most recent results on the sensitivity issue. Theoretically, the climate sensitivity hinges on climate feedbacks from various atmospheric and surface physical processes. Especially cloud and sea-ice processes associated with shortwave radiation are known to have largest uncertainty, resulting in an inaccurate estimation of climate sensitivity. For this reason, recent observational studies using satellite data suggest sensitivity lower than or similar to those estimated by climate models (2-5 K per doubled CO2).

국제기후변화협약 및 정부의 저탄소 정책은 기본적으로 과학이 제시한 이산화탄소 증가에 대한 기후민감도에 근거해야 한다. 그러나 기후민감도의 추정치는 현재까지 연구 단위별로 차이가 커서, 이에 대한 과학적 배경, 한계, 전망을 고찰할 필요가 있다. 본 연구에서는 지금까지의 기후민감도에 대한 국내외 연구 결과를 객관적으로 종합하여 검토한다. 기후민감도를 결정하는 것은 대기와 지면의 각종 물리과정에 의한 기후피드백 작용이며, 이 중 특히 태양 단파복사량을 조절하는 구름, 해빙과 관련된 물리과정은 불확실성이 가장 커서, 부정확한 민감도 추정을 야기하는 것으로 보인다. 이 때문에, 최근 인공위성 자료를 이용하여 추정한 기후민감도는 기후모델들이 갖는 범위(대기 중 이산화탄소 2배 증가당 지구평균기온 2-5 K 증가)에 들거나, 그보다 훨씬 작은 값을 갖는다.

Keywords

References

  1. Charney, J.G. and Coauthors, 1979, Carbon dioxide and climate: A scientific assessment. National Academy of Sciences, Washington, DC., USA, 22 p.
  2. Chung, E.-S., Soden, B.J., and Sohn, B.-J., 2010, Revisiting the determination of climate sensitivity from relationships between surface temperature and radiative fluxes. Geophysical Research Letters, 37, L10703. https://doi.org/10.1029/2010GL043051
  3. Dessler, A.E., A determination of the cloud feedback from climate variations over the Past Decade. Science, 330, 1523-1527.
  4. Hartmann, D.L., 1994, Global physical climatology. Academic Press, San Diego, USA, 411 p.
  5. Intergovernmental Panel on Climate Change, 2007, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 996 p.
  6. Lin, B., Chambers, L., Stackhouse Jr., P., Wielicki, B., Hu, Y., Minnis, P., Loeb, N., Sun, W., Potter, G., Min, Q., Schuster, G., and Fan, T.-F., 2010, Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance. Atmospheric Chemistry and Physics, 10, 1923-1930. https://doi.org/10.5194/acp-10-1923-2010
  7. Lindzen, R.S. and Choi, Y.-S., 2009, On the determination of climate feedbacks from ERBE data. Geophysical Research Letters, 36, L16705. https://doi.org/10.1029/2009GL039628
  8. Lindzen, R.S. and Choi, Y.-S., 2011, On the observational determination of climate sensitivity and its implications. submitted to Asia-Pacific Journal of Atmospheric Sciences.
  9. Lindzen, R.S. and Giannitsis, C., 1998, On the climatic implications of volcanic cooling. Journal of Geophysical Research, 103, 5929-5941. https://doi.org/10.1029/98JD00125
  10. Murphy, D.M., Solomon, S., Portmann, R.W., Rosenlof, K.H., Forster, P.M., and Wong, T., 2009, An observationally based energy balance for the Earth since 1950. Journal of Geophysical Research, 114, D17107. https://doi.org/10.1029/2009JD012105
  11. Murphy, D.M., 2010, Constraining climate sensitivity with linear fits to outgoing radiation. Geophysical Research Letters, 37, L09704. https://doi.org/10.1029/2010GL042911
  12. Newman, M., Sardeshmukh, P.D., and Penland, C., 2009, How important is air-sea coupling in ENSO and MJO Evolution? Journal of Climate, 22, 2958-2977. https://doi.org/10.1175/2008JCLI2659.1
  13. Pierrehumbert, R.T., 2009, Principles of planetary climate. Cambridge University Press, UK, 688 p.
  14. Rind, D., 2008, The consequences of not knowing lowand high-latitude climate sensitivity. Bulletin of the American Meteorological Society, 89, 855-864. https://doi.org/10.1175/2007BAMS2520.1
  15. Roe, G.H. and Baker, M.B., 2007, Why is climate sensitivity so unpredictable? Science, 318, 629-632. https://doi.org/10.1126/science.1144735
  16. Schlesinger, M., 1988, Quantitative analysis of feedbacks in climate model simulations of CO2-induced warming. In Schlesinger, M.E. (ed.), Physically-Based Modelling and Simulation of Climate and Climatic Change. NATO Advanced Study Institute Series, Kluwer, Dordrecht, 653-736.
  17. Schwartz, S.E., 2007, Heat capacity, time constant, and sensitivity of Earth’s climate system. Journal of Geophysical Research, 112, D24S05. https://doi.org/10.1029/2007JD008746
  18. Soden, B.J. and Held, I.M., 2006, An assessment of climate feedbacks in coupled ocean-atmosphere models. Journal of Climate, 19, 3354-3360. https://doi.org/10.1175/JCLI3799.1
  19. Trenberth, K.E., Fasullo, J.T., O’Dell, C., and Wong, T., 2010, Relationships between tropical see surface temperature and top-of-atmosphere radiation. Geophysical Research Letters, 37, L03702. https://doi.org/10.1029/2009GL042314
  20. Webb, M.J., Senior, C.A., Sexton, D.M.H., Ingram, W.J., Williams, K.D., Ringer, M.A., McAvaney, B.J., Colman, R., Soden, B.J., Gudgel, R., Knutson, T., Emori, S., Ogura, T., Tsushima, Y., Andronova, N., Li, B., Musat, I., Bony, S., and Taylor, K., 2006, On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensemble. Climate Dynamics, 27, 17-38. https://doi.org/10.1007/s00382-006-0111-2
  21. Wentz, F.J., Ricciardulli, L., Hilburn, K., and Mears, C., 2007, How Much More Rain Will Global Warming Bring? Science, 317, 233-235. https://doi.org/10.1126/science.1140746

Cited by

  1. The Global Warming Hiatus Simulated in HadGEM2-AO Based on RCP8.5 vol.35, pp.4, 2014, https://doi.org/10.5467/JKESS.2014.35.4.249
  2. Climate Consensus and ‘Misinformation’: A Rejoinder to Agnotology, Scientific Consensus, and the Teaching and Learning of Climate Change vol.24, pp.3, 2015, https://doi.org/10.1007/s11191-013-9647-9