DOI QR코드

DOI QR Code

SOLUTIONS OF QUASILINEAR WAVE EQUATION WITH STRONG AND NONLINEAR VISCOSITY

  • Hwang, Jin-Soo (Department of Mathematics Education College of Education Daegu University) ;
  • Nakagiri, Shin-Ichi (Department of Applied Mathematics Faculty of Engineering Kobe University) ;
  • Tanabe, Hiroki (Emeritus Professor of Osaka University)
  • Received : 2010.05.20
  • Published : 2011.07.01

Abstract

We study a class of quasilinear wave equations with strong and nonlinear viscosity. By using the perturbation method for semilinear parabolic equations, we have established the fundamental results on existence, uniqueness and continuous dependence on data of weak solutions.

Keywords

References

  1. H. T. Banks, R. C. Smith, and Y. Wang, Smart Material Structures, Modeling, Estimation and Control, RAM, John Wiley and Sons, Masson, 1996.
  2. R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Evolution Problems I, Springer-Verlag, 1992.
  3. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
  4. J. Greenberg, On the existence, uniqueness, and stability of solutions of the equation $_{{\rho}o}X_{tt}\;=E(X_x)X_{xx}+{\lambda}X_{xxt}$, J. Math. Anal. Appl. 25 (1969), 575-591. https://doi.org/10.1016/0022-247X(69)90257-1
  5. J. Greenberg, R. MacCamy, and V. Mizel, On the existence, uniqueness, and stability of solutions of the equation ${\sigma}^I(u_x)u_{xx}+{\lambda}u_{xtx}=_{{\rho}o}u_{tt}$, J. Math. Mech. 17 (1967/1968), 707-728.
  6. J.-H., Ha, S. Nakagiri, and H. Tanabe, Frechet differentiability of solution mappings for semilinear second order evolution equations, J. Math. Anal. Appl. 346 (2008), no. 2, 374-383. https://doi.org/10.1016/j.jmaa.2008.05.038
  7. J. S. Hwang and S. Nakagiri, Weak solutions of the equation of motion of membrane with strong viscosity, J. Korean Math. Soc. 44 (2007), no. 2, 443-453. https://doi.org/10.4134/JKMS.2007.44.2.443
  8. J. S. Hwang and S. Nakagiri, Optimal control problems for the equation of motion of membrane with strong viscosity, J. Math. Anal. Appl. 321 (2006), no. 1, 327-342. https://doi.org/10.1016/j.jmaa.2005.07.015
  9. J. S. Hwang and S. Nakagiri, Parameter identification problems for the equation of motion of membrane with strong viscosity, J. Math. Anal. Appl. 342 (2008), no. 1, 125-134. https://doi.org/10.1016/j.jmaa.2007.11.029
  10. T. Kobayashi, H. Pecher, and Y. Shibata, On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, Math. Ann. 296 (1993), no. 2, 215-234. https://doi.org/10.1007/BF01445103
  11. R. E. Showalter, Hilbert Space Method for Partial Differential Equations, Pitman, London, 1977.
  12. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physis, Second Edition, Applied Mathematical Sciences. Vol. 68, Springer-Verlag, Berlin-Heidelberg- New York, 1997.
  13. Q.-F. Wang and S. Nakagiri, Weak solutions of nonlinear parabolic evolution problems with uniform Lipschitz continuous nonlinearities, Mem. Grad. School Sci. & Technol., Kobe Univ. 19-A (2001), 83-96.

Cited by

  1. Weak and Strong Solutions for a Strongly Damped Quasilinear Membrane Equation vol.2017, 2017, https://doi.org/10.1155/2017/4529847