References
- H. T. Banks, R. C. Smith, and Y. Wang, Smart Material Structures, Modeling, Estimation and Control, RAM, John Wiley and Sons, Masson, 1996.
- R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Evolution Problems I, Springer-Verlag, 1992.
- D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
-
J. Greenberg, On the existence, uniqueness, and stability of solutions of the equation
$_{{\rho}o}X_{tt}\;=E(X_x)X_{xx}+{\lambda}X_{xxt}$ , J. Math. Anal. Appl. 25 (1969), 575-591. https://doi.org/10.1016/0022-247X(69)90257-1 -
J. Greenberg, R. MacCamy, and V. Mizel, On the existence, uniqueness, and stability of solutions of the equation
${\sigma}^I(u_x)u_{xx}+{\lambda}u_{xtx}=_{{\rho}o}u_{tt}$ , J. Math. Mech. 17 (1967/1968), 707-728. - J.-H., Ha, S. Nakagiri, and H. Tanabe, Frechet differentiability of solution mappings for semilinear second order evolution equations, J. Math. Anal. Appl. 346 (2008), no. 2, 374-383. https://doi.org/10.1016/j.jmaa.2008.05.038
- J. S. Hwang and S. Nakagiri, Weak solutions of the equation of motion of membrane with strong viscosity, J. Korean Math. Soc. 44 (2007), no. 2, 443-453. https://doi.org/10.4134/JKMS.2007.44.2.443
- J. S. Hwang and S. Nakagiri, Optimal control problems for the equation of motion of membrane with strong viscosity, J. Math. Anal. Appl. 321 (2006), no. 1, 327-342. https://doi.org/10.1016/j.jmaa.2005.07.015
- J. S. Hwang and S. Nakagiri, Parameter identification problems for the equation of motion of membrane with strong viscosity, J. Math. Anal. Appl. 342 (2008), no. 1, 125-134. https://doi.org/10.1016/j.jmaa.2007.11.029
- T. Kobayashi, H. Pecher, and Y. Shibata, On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, Math. Ann. 296 (1993), no. 2, 215-234. https://doi.org/10.1007/BF01445103
- R. E. Showalter, Hilbert Space Method for Partial Differential Equations, Pitman, London, 1977.
- R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physis, Second Edition, Applied Mathematical Sciences. Vol. 68, Springer-Verlag, Berlin-Heidelberg- New York, 1997.
- Q.-F. Wang and S. Nakagiri, Weak solutions of nonlinear parabolic evolution problems with uniform Lipschitz continuous nonlinearities, Mem. Grad. School Sci. & Technol., Kobe Univ. 19-A (2001), 83-96.
Cited by
- Weak and Strong Solutions for a Strongly Damped Quasilinear Membrane Equation vol.2017, 2017, https://doi.org/10.1155/2017/4529847