References
- M. Bhargava, On the Conway-Schneeberger fifteen theorem, Quadratic forms and their applications (Dublin, 1999), 27-37, Contemp. Math., 272, Amer. Math. Soc., Providence, RI, 2000.
- M. Bhargava and J. Hanke, Universal quadratic forms and the 290 theorem, to appear in Invent. Math.
- F. Ge and Z. W. Sun, On universal sums of generalized polygonal numbers, arXiv:0906.2450, 2009.
- S. Guo, H. Pan, and Z. W. Sun, Mixed sums of squares and triangular numbers. II, Integers 7 (2007), A56, 5 pp.
- R. K. Guy, Every number is expressible as the sum of how many polygonal numbers?, Amer. Math. Monthly 101 (1994), no. 2, 169-172. https://doi.org/10.2307/2324367
- W. C. Jagy, Five regular or nearly-regular ternary quadratic forms, Acta Arith. 77 (1996), no. 4, 361-367. https://doi.org/10.4064/aa-77-4-361-367
- W. C. Jagy, I. Kaplansky, and A. Schiemann, There are 913 regular ternary forms, Mathematika 44 (1997), no. 2, 332-341. https://doi.org/10.1112/S002557930001264X
- Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge University Press, 1993.
- M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math. vol 164, Springer-Verlag, New York, 1991.
- B.-K. Oh, Regular positive ternary quadratic forms, Acta. Arith. 147 (2011), no. 3, 233-243. https://doi.org/10.4064/aa147-3-3
- B.-K. Oh, Representations of arithmetic progressions by positive definite quadratic forms, to appear in Int. J. Number Theory.
- B.-K. Oh and Z. W. Sun, Mixed sums of squares and triangular numbers. III, J. Number Theory 129 (2009), no. 4, 964-969. https://doi.org/10.1016/j.jnt.2008.10.002
- O. T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1963.
- K. Ono and K. Soundararajan, Ramanujan's ternary quadratic form, Invent. Math. 130 (1997), no. 3, 415-454. https://doi.org/10.1007/s002220050191
- Z. W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127 (2007), no. 2, 103-113. https://doi.org/10.4064/aa127-2-1
- Z. W. Sun, On universal sums of polygonal numbers, arXiv:0905.0635, 2009.
Cited by
- Universal sums of three quadratic polynomials pp.1869-1862, 2020, https://doi.org/10.1007/s11425-017-9354-4
- Ternary Universal Sums of Generalized Polygonal Numbers pp.1793-7310, 2018, https://doi.org/10.1142/S1793042119500350