References
- K. Cieliebak and U. Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math. 239 (2009), no. 2, 251-316. https://doi.org/10.2140/pjm.2009.239.251
- K. Cieliebak, U. Frauenfelder, and A. Oancea, Rabinowitz Floer homology and symplectic homology, Ann. Sci. Ec. Norm Super. (4) 43 (2010), no. 6, 957-1015. https://doi.org/10.24033/asens.2137
- B. Eckmann and P. Hilton, Commuting limits with colimits, J. Algebra 11 (1969), 116- 144. https://doi.org/10.1016/0021-8693(69)90105-7
- A. Frei and J. Macdonald, Limits in categories of relations and limit-colimit commutation, J. Pure Appl. Algebra 1 (1971), no. 2, 179-197. https://doi.org/10.1016/0022-4049(71)90017-X
- K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part I, AMS/IP Studies in Advanced Mathematics Vol. 46.1, American Mathematical Society and International Press, 2009.
- A. Grothendieck, Elements de geometrie algebrique. III. Etude cohomologique des faisceaux coherents. I. Inst. Hautes Etudes Sci. Publ. Math. No. 11 (1961), 167 pp, 14.05
- H. Hofer and D. Salamon, Floer homology and Novikov rings, The Floer memorial volume, 483-524, Progr. Math., 133, Birkhauser, Basel, 1995.
- H. Hofer, C. Taubes, A. Weinstein, and E. Zehnder, The Floer Memorial Volume, Birkhauser, Basel, 1995.
- H. Hofer, K. Wysocki, and E. Zehnder, A General Fredholm Theory I: A Splicing-Based Differential Geometry, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 841-876.
- J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. https://doi.org/10.2140/pjm.1962.12.337
- G. Nobeling, Uber die Derivierten des Inversen und des direkten Limes einer Modul-familie, Topology 1 (1962), 47-61. https://doi.org/10.1016/0040-9383(62)90095-2
- K. Ono, On the Arnold conjecture for weakly monotone symplectic manifolds, Invent. Math. 119, (1995), no. 3, 519-537. https://doi.org/10.1007/BF01245191
- S. Piunikhin, D. Salamon, and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, Contact and symplectic geometry (Cambridge, 1994), 171-200, Publ. Newton Inst., 8, Cambridge Univ. Press, Cambridge, 1996.
- J. Roos, Sur les foncteurs derives de lim.Applications., C. R. Acad. Sci. Paris 252 (1961), 3702-3704.
- M. Schwarz, Morse Homology, Birkhauser Verlag, 1993.
- E. Spanier, Algebraic Topology, McGraw-Hill Book Co., New York-Toronto, Ont.- London, 1966.
- C. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.
Cited by
- Continuation homomorphism in Rabinowitz Floer homology for symplectic deformations vol.151, pp.03, 2011, https://doi.org/10.1017/S0305004111000569
- Rabinowitz–Floer homology for superquadratic Dirac equations on compact spin manifolds vol.13, pp.1, 2013, https://doi.org/10.1007/s11784-013-0116-5
- Cuplength estimates in Morse cohomology vol.08, pp.02, 2016, https://doi.org/10.1142/S1793525316500102
- Symplectic Tate homology vol.112, pp.1, 2016, https://doi.org/10.1112/plms/pdv065
- Vanishing of Rabinowitz Floer homology on negative line bundles vol.285, pp.1-2, 2017, https://doi.org/10.1007/s00209-016-1718-6
- Homological approach to problems with jumping non-linearity vol.144, 2016, https://doi.org/10.1016/j.na.2016.07.003
- Bubbling phenomena in calculus of variations vol.6, pp.3, 2017, https://doi.org/10.1007/s40065-016-0157-x
- Rabinowitz Floer homology and mirror symmetry vol.11, pp.1, 2018, https://doi.org/10.1112/topo.12050
- Symplectic homology and the Eilenberg–Steenrod axioms vol.18, pp.4, 2018, https://doi.org/10.2140/agt.2018.18.1953