References
- P. Amendt and H. Weitzner, Relativistically covariant warm charged uid beam modeling, The Physics of Fluids 28 (1985), 949-957. https://doi.org/10.1063/1.865066
-
D. E. Blair, T. Koufogiorgos, and R. Sharma, A classifcation of 3-dimensional contact metric manifolds with Q
$\phi$ =$\phi$ Q, Kodai Math. J. 13 (1990), no. 3, 391-401. https://doi.org/10.2996/kmj/1138039284 - J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker, 1981.
- B. Y. Chen and K. Yano, Hypersurfaces of a conformally at space, Tensor (N.S.) 26 (1972), 318-322.
- R. A. Chevalier, Hydrodynamic models of supernova explosions, Fundamentals of Cosmic Physics 7 (1981), 1-58.
- U. C. De, K. Matsumoto, and A. A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Mat. de Messina, al n. 3 (1999), 149-158.
- F. Defever, R. Deszcz, M. Hotlos, M. Kucharski, and Z. Senturk, Generalisations of Robertson-Walker spaces, Annales Univ. Sci. Budapest. Eotvos Sect. Math. 43 (2000), 13-24.
- J. Deprez, W. Roter, and L. Verstraelen, Conditions on the projective curvature tensor of conformally at Riemannian manifolds, Kyungpook Math. J. 29 (1989), no. 2, 153- 165.
- R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser. A 44 (1992), no. 1, 1-34.
- R. Deszcz, F. Dillen, L. Verstraelen, and L. Vrancken, Quasi-Einstein totally real sub- manifolds of the nearly Kahler 66-sphere, Tohoku Math. J. (2) 51 (1999), no. 4, 461-478. https://doi.org/10.2748/tmj/1178224715
- R. Deszcz, M. Glogowska, M. Hotlos, and Z. Senturk, On certain quasi-Einstein semi- symmetric hypersurfaces, Annales Univ. Sci. Budapest. Eotvos Sect. Math. 41 (1998), 151-164.
- R. Deszcz, M. Hotlos, and Z. Senturk, Quasi-Einstein hypersurfaces in semi-Riemann- ian space forms, Colloq. Math. 81 (2001), no. 1, 81-97.
- R. Deszcz, M. Hotlos, and Z. Senturk, Quasi-Einstein hypersurfaces in semi-Riemann- ian space forms, Colloq. Math. 81 (2001), no. 1, 81-97.
- R. Deszcz, M. Hotlos, and Z. Senturk, On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, Soochow J. Math. 27 (2001), no. 4, 375-389.
- R. Deszcz, P. Verheyen, and L. Verstraelen, On some generalized Einstein metric con- ditions,Publ. Inst. Math. (Beograd) (N.S.) 60(74) (1996), 108-120.
- R. Deszcz, L. Verstraelen, and S. Yaprak, Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor, Chinese J. Math. 22 (1994), no. 2, 139-157.
- R. Deszcz, L. Verstraelen, and S. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica 22 (1994), no. 2, 167-179.
- R. Deszcz and M. Hotlos, On some pseudosymmetry type curvature condition, Tsukuba J. Math. 27 (2003), no. 1, 13-30. https://doi.org/10.21099/tkbjm/1496164557
- R. Deszcz and M. Hotlos, On hypersurfaces with type number two in space forms, Ann. Univ. Sci. Bu- dapest. Eotvos Sect. Math. 46 (2003), 19-34.
- R. Deszcz and M. Glogowska, Examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces, Colloq. Math. 94 (2002), no. 1, 87-101. https://doi.org/10.4064/cm94-1-7
- D. Ferus, A Remark on Codazzi Tensors on Constant Curvature Space, Lecture Notes Math. 838, Global Differential Geometry and Global Analysis, Springer-Verlag, New York, 1981.
- M. Glogowska, Semi-Riemannian manifolds whose weyl tensor is a Kulkarni-Nomizu square, Publ. Inst. Math. (Beograd), Tome 72 (2002), no. 86, 95-106. https://doi.org/10.2298/PIM0272095G
- M. Glogowska, On quasi-Einstein Cartan type hypersurfaces, J. Geom. Phys. 58 (2008), no. 5, 599-614. https://doi.org/10.1016/j.geomphys.2007.12.012
- F. Gouli-Andreou and E. Moutaf, Two classes of pseudosymmetric contact metric 3- manifolds, Pacifc J. Math. 239 (2009), no. 1, 17-37. https://doi.org/10.2140/pjm.2009.239.17
- T. Ikawa and M. Erdogan, Sasakian manifolds with Lorentzian metric, Kyungpook Math. J. 35 (1996), no. 3, 517-526.
- H. Karchar, Infnitesimal characterization of Friedmann Universe, Arch. Math. Basel 38 (1992), 58-64.
- K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
- K. Matsumoto and I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor N. S. 47 (1988), no. 2, 189-197.
- I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Classical analysis (Kaz- imierz Dolny, 1991), 155-169, World Sci. Publ., River Edge, NJ, 1992.
- I. Mihai, A. A. Shaikh, and U. C. De, On Lorentzian para-Sasakian manifolds, Korean J. Math. Sciences 6 (1999), 1-13. https://doi.org/10.1186/2251-7456-6-1
- M. Novello and M. J. Reboucas, The stability of a rotating universe, The Astrophysics J. 225 (1978), 719-724. https://doi.org/10.1086/156533
- B. O'Neill, Semi Riemannian Geometry with Applications to Relativity, Academic Press, Inc., 1983.
- P. J. E. Peebles, The Large-Scale Structure of the Universe, Princeton Univ. Press, 1980.
- J. A. Schouten, Ricci Calculus, (2nd Ed.), Springer-Verlag, Berlin, 1954.
- A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the con- circular type, Kyungpook Math. J. 43 (2003), no. 2, 305-314.
-
A. A. Shaikh, T. Basu, and K. K. Baishya, On the existence of locally
$\phi$ -recurrent LP-Sasakian manifold, Bull. Allahabad Math. Soc. 24 (2009), no. 2, 281-295. -
A. A. Shaikh and K. K. Baishya, On
$\phi$ -symmetric LP-Sasakian manifolds, Yokohama Math. J. 52 (2006), no. 2, 97-112. - A. A. Shaikh and K. K. Baishya, Some results on LP-Sasakian manifolds, Bull. Math. Soc. Sc. Math. Roumanie Tome, 49(97) (2006), no. 2, 193-205.
- A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes, J. Math. Stat. 1 (2005), no. 2, 129-132. https://doi.org/10.3844/jmssp.2005.129.132
- A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes II, Amer. J. Appl. Sci. 3 (2006), 1790-1794. https://doi.org/10.3844/ajassp.2006.1790.1794
- M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish and Perish, Vol. I, 1970.
-
T. Takahashi, Sasakian
$\phi$ -symmetric spaces, Tohoku Math. J. 29 (1977), no. 1, 91-113. https://doi.org/10.2748/tmj/1178240699
Cited by
- ON NEW CLASSES OF EXPLICIT QUASI-EINSTEIN RIEMANNIAN MANIFOLDS vol.09, pp.08, 2012, https://doi.org/10.1142/S0219887812200150
- Slant and pseudo-slant submanifolds in LCS-manifolds vol.63, pp.1, 2013, https://doi.org/10.1007/s10587-013-0012-6