DOI QR코드

DOI QR Code

기후변화가 짐바브웨 옥수수 수확량에 미치는 영향 모의

Simulation of the Effects of Climate Change on Yield of Maize in Zimbabwe

  • Temba, Nkomozepi (Department of Agricultural Engineering, Kyungpook National University) ;
  • Chung, Sang-Ok (Department of Agricultural Engineering, Kyungpook National University)
  • 투고 : 2011.04.04
  • 심사 : 2011.05.23
  • 발행 : 2011.05.31

초록

기후변화는 에너지 수지와 물 수지의 변화를 초래하여 육상 생물권에 영향을 미칠 것이다. 기온과 강수량의 변화와 대기중의 탄산가스 농도 변화는 작물의 생육환경을 크게 변화시킬 것이다. 본 연구에서는 FAO AquaCrop 모형을 이용하여 기온과 강수량의 변화와 대기중 탄산가스 농도의 변화가 짐바브웨의 옥수수 수확량에 미치는 영향을 분석하였다. 미래 기후 값은 HadCM3 모형 예측 값을 change factor 기법으로 상세화 하였다. 배출 시나리오는 A2와 B2를 선정하였으며 시간대는 2020s, 2050s 및 2080s의 30년 기간을 선정하였다. 기준작물 증발산량은 Penman-Monteith 식으로 산정하였다. 관개용수 공급이 충분한 것으로 가정하고 전통적인 보충관개를 실시하였을 때 기준년도 (1970s)에 비해 옥수수 증발산량은 최대 26 %, 옥수수 잠재 수확량은 최대 93 %까지 증가할 것으로 예측되었으며 물의 생산성은 최대 53 %까지 증가할 것으로 예측되었다.

키워드

참고문헌

  1. Ahn, S. R., M. J. Park, G. A. Park and S. J. Kim, 2009. Assessing future climate change impact on hydrologic components of Gyeongancheon watershed. Journal of Korea Water Resources Association 42(1): 33-50 (in Korean). https://doi.org/10.3741/JKWRA.2009.42.1.33
  2. Araya, A., S. D. Keesstra, L. Stroosnijder, 2010. Simulating yield response to water of Teff (Eragrostis tef) with FAO's AquaCrop model. Field Crops Research 116: 196-204. https://doi.org/10.1016/j.fcr.2009.12.010
  3. Chun, J. A., Q. Wang, D. Timlin, D. Fleisher and V. R. Reddy, 2011. Effect of elevated carbon dioxide and water stress on gas exchange and water use efficiency in corn. Agricultural and Forest Meteorology 151: 378-384 https://doi.org/10.1016/j.agrformet.2010.11.015
  4. Chung, S. O., 2010. Simulating Evapotranspiration and Yield responses of Rice to Climate Change using FAOAquaCrop. Journal of the Korean Society of Agricultural Engineers 52(3): 57-64 (in Korean). https://doi.org/10.5389/KSAE.2010.52.3.057
  5. Chung, S. -O., J. A. Rodriguez-Diaz, E. K. Weatherhead and J. W Knox, 2011. Climate change impacts on water for irrigating paddy rice in South Korea. Irrigation and drainage 60(2): 263-273. https://doi.org/10.1002/ird.559
  6. Diaz-Nieto, J., and R. L. Wilby, 2005. A Comparison of statistical downscaling and Climate change factor methods: Impacts on Low flows in the river Thames, United Kingdom. Climate Change 69: 245-268. https://doi.org/10.1007/s10584-005-1157-6
  7. Doorenbos, J., and A.H. Kassam, 1979. Yield response to water. Irrigation and Drainage Paper No. 33. FAO, Rome, Italy.
  8. Farahani, H. J., G. Izzi and T. Y. Oweis, 2009. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal 101: 469-476. https://doi.org/10.2134/agronj2008.0182s
  9. Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell and R. A. Wood, 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16: 147-168. https://doi.org/10.1007/s003820050010
  10. Hsiao, T. C., L. K. Heng, P. Studeto, B. Rojas-Lara, D. Raes and E. Fereres, 2009. AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal 101: 469-476. https://doi.org/10.2134/agronj2008.0182s
  11. Intergovernmental Panel on Climate Change (IPCC), 2001. Data distribution centre. http://www.ipcc-data.org/ancilliary/tar-bern.txt accessed on 28 Sep. 2010.
  12. Li, X., T. Takahashi, N. Suzuki, H. M. Kaiser, 2011. The impact of climate change on maize yields in the United States and China. Agricultural Systems. doi: 10.1016/ j.agsy.2010.12.006.
  13. New, M., D. Lister, M. Hulme and I. Makin, 2002. A high resolution data set of surface climate over global land areas. Climate Research 21: 1-25. https://doi.org/10.3354/cr021001
  14. Nkomozepi, T., and S. O. Chung, 2011. Assessing the effects of Climate Change on irrigation water requirements for corn in Zimbabwe. Journal of the Korean Society of Agricultural Engineers 53(1): 47-55. https://doi.org/10.5389/KSAE.2011.53.1.047
  15. Phillips, J. G., M. A. Cane and C. Rosenzweig, 1998. ENSO, seasonal rainfall patterns and simulated maize yield variability in Zimbabwe. Agricultural and Forest Meteorology 90: 39-50. https://doi.org/10.1016/S0168-1923(97)00095-6
  16. Raes, D., P. Steduto, T. C. Hsiao and E. Fereres, 2010. AquaCrop reference manual, AquaCrop version 3.1, FAO, Land and Water Division, Rome, Italy.
  17. Steduto, P., D. Raes, T. C. Hsia, E. Fereres, L. K. Heng, T. A. Howell, S. R. Evett, B. A. Rojas-Lara, H. J. Farahani, G. Izzi, T. Y. Oweist, S. P. Wani, J. Hoogeveen and S. Geerts, 2009. Concepts and applications of AquaCrop: the FAO crop productivity model. http://ddr.nal.usda.gov/bitstream/10113/37297/1/IND44289150.pdf accessed on 12 Dec. 2010.
  18. Unganai, L. S., and F. N. Kogan, 1998. Drought Monitoring and Corn Yield Estimation in Southern Africa from AVHRR Data. Remote sensing Environment 63: 219-232. https://doi.org/10.1016/S0034-4257(97)00132-6
  19. Wurzel, P., 1987. Hydrology in Zimbabwe - the past and the future. Water for the Future: Hydrology in Perspective. In Proc. Rome Symposium.

피인용 문헌

  1. Uncertainty of Simulated Paddy Rice Yield using LARS-WG Derived Climate Data in the Geumho River Basin, Korea vol.55, pp.4, 2013, https://doi.org/10.5389/KSAE.2013.55.4.055
  2. General Circulation Model Derived Climate Change Impact and Uncertainty Analysis of Maize Yield in Zimbabwe vol.54, pp.4, 2012, https://doi.org/10.5389/KSAE.2012.54.4.083