DOI QR코드

DOI QR Code

Polarity-tuned Gel Polymer Electrolyte Coating of High-voltage LiCoO2 Cathode Materials

  • Park, Jang-Hoon (Department of Chemical Engineering, College of Engineering, Kangwon National University) ;
  • Cho, Ju-Hyun (Department of Chemical Engineering, College of Engineering, Kangwon National University) ;
  • Kim, Jong-Su (Techno Semichem) ;
  • Shim, Eun-Gi (Techno Semichem) ;
  • Lee, Yun-Sung (School of Applied Chemical Engineering, Chonnam National University) ;
  • Lee, Sang-Young (Department of Chemical Engineering, College of Engineering, Kangwon National University)
  • Received : 2011.05.25
  • Accepted : 2011.05.30
  • Published : 2011.05.31

Abstract

We demonstrate a new surface modification of high-voltage lithium cobalt oxide ($LiCoO_2$) cathode active materials for lithium-ion batteries. This approach is based on exploitation of a polarity-tuned gel polymer electrolyte (GPE) coating. Herein, two contrast polymers having different polarity are chosen: polyimide (PI) synthesized from thermally curing 4-component (pyromellitic dianhydride/biphenyl dianhydride/phenylenediamine/oxydianiline) polyamic acid (as a polar GPE) and ethylene-vinyl acetate copolymer (EVA) containing 12 wt% vinyl acetate repeating unit (as a less polar GPE). The strong affinity of polyamic acid for $LiCoO_2$ allows the resulting PI coating layer to present a highly-continuous surface film of nanometer thickness. On the other hand, the less polar EVA coating layer is poorly deposited onto the $LiCoO_2$, resulting in a locally agglomerated morphology with relatively high thickness. Based on the characterization of GPE coating layers, their structural difference on the electrochemical performance and thermal stability of high-voltage (herein, 4.4 V) $LiCoO_2$ is thoroughly investigated. In comparison to the EVA coating layer, the PI coating layer is effective in preventing the direct exposure of $LiCoO_2$ to liquid electrolyte, which thus plays a viable role in improving the high-voltage cell performance and mitigating the interfacial exothermic reaction between the charged $LiCoO_2$ and liquid electrolytes.

Keywords

References

  1. J. Thomas, 'A spectacularly reactive cathode' Nat. Mater., 2, 705 (2003). https://doi.org/10.1038/nmat1010
  2. M. S. Whittingham, 'Lithium batteries and cathode materials' Chem. Rev., 104, 4271 (2004). https://doi.org/10.1021/cr020731c
  3. H. Li, Z. Wang, L. Chen, and X. Huang, 'Research on advanced materials for Li-ion batteries' Adv. Mater., 21, 4593 (2009). https://doi.org/10.1002/adma.200901710
  4. M. R. Palacin, 'Recent advances in rechargeable battery materials: a chemist's perspective' Chem. Soc. Rev., 38, 2565 (2009). https://doi.org/10.1039/b820555h
  5. B. L. Ellis, K. T. Lee, and L. F. Nazar, 'Positive electrode materials for Li-ion and Li-batteries' Chem. Mater., 22, 691 (2010). https://doi.org/10.1021/cm902696j
  6. J. B. Goodenough and Y. Kim, 'Challenges for rechargeable Li batteries' Chem. Mater., 22, 587 (2010). https://doi.org/10.1021/cm901452z
  7. K. S. Lee, Y. K. Sun, J. Noh, K. S. Song, and D. W. Kim, 'Improvement of high voltage cycling performance and thermal stability of lithium-ion cells by use of a thiophene additive' Electrochem. Comm., 11, 1900 (2009). https://doi.org/10.1016/j.elecom.2009.08.012
  8. A. Abouimrane, I. Belharouak, and K. Amine, 'Sulfonebased electrolytes for high-voltage Li-ion batteries' Electrochem. Comm., 11, 1073 (2009). https://doi.org/10.1016/j.elecom.2009.03.020
  9. Y. K. Sun, J. M. Han, S. T. Myung, S. W. Lee, and K. Amine, 'Significant improvement of high voltage cycling behavior $AlF_3-coated$ $LiCoO_2$ cathode' Electrochem. Comm., 8, 821 (2006). https://doi.org/10.1016/j.elecom.2006.03.040
  10. Y. K. Sun, S. W. Cho, S. T. Myung, K. Amine, and J. Prakash, 'Effect of $AlF_3$ coating amount on high voltage cycling performance of $LiCoO_2$' Electrochim. Acta, 53, 1013 (2007). https://doi.org/10.1016/j.electacta.2007.08.032
  11. D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y. S. Cohen, H. J. Kim, and M. Schmidt, 'On the capacity fading of $LiCoO_2$ intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives' Electrochim. Acta, 47, 4291 (2002). https://doi.org/10.1016/S0013-4686(02)00417-6
  12. H. Miyashiro, A. Yamanka, M. Tabuchi, S. Seki, M. Nakayama, Y. Ohno, Y. Kobayashi, Y. Mita, A. Usami, and M. Wakihara, 'Improvement of degradation at elevated temperature and at high state-of-charge storage by $ZrO_2$ coating on $LiCoO_2$' J. Electrochem. Soc., 153, A348 (2006). https://doi.org/10.1149/1.2149306
  13. Z. Chen and J. R. Dahn, 'Methods to obtain excellent capacity retention in $LiCoO_2$ cycled to 4.5V' Electrochim. Acta, 49, 1079 (2004). https://doi.org/10.1016/j.electacta.2003.10.019
  14. Z. Chen and J. R. Dahn, 'Effect of a $ZrO_2$ coating on the structure and electrochemistry of $LixCoO_2$ when cycled to 4.5 V' Electrochem. Solid State Lett., 5, A213 (2002). https://doi.org/10.1149/1.1503202
  15. W. Chang, J. W. Choi, J. C. Im, and J. K. Lee, 'Effects of ZnO coating on electrochemical performance and thermal stability of $LiCoO_2$ as cathode material for lithiumion batteries' J. Power Sources, 195, 320 (2010). https://doi.org/10.1016/j.jpowsour.2009.06.104
  16. J. Saunier, F. Alloin, J. Y. Sanchez, and G. Caillon, 'Thin and flexible lithium-ion batteries: investigation of polymer electrolytes' J. Power Sources, 119, 454 (2003). https://doi.org/10.1016/S0378-7753(03)00197-6
  17. S. Y. Lee, W. H. Meyer, and G. Wegner, 'Phase behavior of gel-type polymer electrolytes and its influence on electrochemical properties' ChemPhysChem, 6, 49 (2005). https://doi.org/10.1002/cphc.200400300
  18. A. M. Stephan, 'Review on gel polymer electrolytes for lithium batteries' Eur. Polym. J., 42, 21 (2006). https://doi.org/10.1016/j.eurpolymj.2005.09.017
  19. F. Ciuffa, F. Croce, A. Depifanio, S. Panero, and B. Scrosati, 'Lithium and proton conducting gel-type membranes' J. Power Sources, 127, 53 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.007
  20. M. C. Choi, Y. K. Kim, and C. S. Ha, 'Polymers for flexible displays: From material selection to device applications' Prog. Polym. Sci., 33, 581 (2008). https://doi.org/10.1016/j.progpolymsci.2007.11.004
  21. L. Y. Jiang, Y. Wang, T. S. Chung, X. Y. Qiao, and J. Y. Lai, 'Polyimides membranes for pervaporation and biofuels separation' Prog. Polym. Sci., 34, 1135 (2009). https://doi.org/10.1016/j.progpolymsci.2009.06.001
  22. W. Essafi, G. Gebel, and R. Mercier, 'Sulfonated polyimide ionomers: a structural study' Macromolecules, 37, 1431 (2004). https://doi.org/10.1021/ma034965p
  23. H. C. Liou, P. S. Ho, and R. Stierman, 'Thickness dependence of the anisotropy in thermal expansion of PMDA-ODA and BPDA-PDA thin films' Thin Solid Films, 339, 68 (1999). https://doi.org/10.1016/S0040-6090(98)01065-7
  24. J. H. Park, J. S. Kim, E. G. Shim, Y. T. Hong, Y. S. Lee, and S. Y. Lee, 'Polyimide gel polymer electrolytenanoencapsulated $LiCoO_2$ cathode materials for highvoltage Li-ion batteries' Electrochem. Comm., 12, 1099 (2010). https://doi.org/10.1016/j.elecom.2010.05.038
  25. J. Brandrup and E. H. Immergut, "Polymer handbook 3rd edition", Wiley, New York (1999).
  26. H. S. Jeong, J. H. Kim, and S. Y. Lee, 'A novel poly (vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separator with phase inversion-controlled microporous structure for a lithiumion battery' J. Mater. Chem., 20, 9180 (2010). https://doi.org/10.1039/c0jm01086c
  27. J. H. Park, J. H. Cho, W. Park, D. Ryoo, S. J. Yoon, J. H. Kim, Y. U. Jeong, and S. Y. Lee, 'Close-packed $SiO_2/poly$ (methyl methacrylate) binary nanoparticlescoated polyethylene separators for lithium-ion batteries' J. Power Sources, 195, 8306 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.112