DOI QR코드

DOI QR Code

Molecular Mechanism of Tetrabromobisphenol A (TBBPA)-induced Target Organ Toxicity in Sprague-Dawley Male Rats

  • Choi, Jae-Seok (College of Pharmacy, Pusan National University) ;
  • Lee, Young-Jun (College of Pharmacy, Pusan National University) ;
  • Kim, Tae-Hyung (College of Pharmacy, Pusan National University) ;
  • Lim, Hyun-Jung (College of Pharmacy, Pusan National University) ;
  • Ahn, Mee-Young (College of Pharmacy, Pusan National University) ;
  • Kwack, Seung-Jun (National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Kang, Tae-Seok (National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Park, Kui-Lea (National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Lee, Jae-Won (National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Kim, Nam-Deuk (National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Jeong, Tae-Cheon (College of Pharmacy, Yeungnam University) ;
  • Kim, Sang-Geum (College of Pharmacy, Chungnam National University) ;
  • Jeong, Hye-Gwang (College of Pharmacy, Chungnam National University) ;
  • Lee, Byung-Mu (College of Pharmacy, Sungkyunkwan University) ;
  • Kim, Hyung-Sik (College of Pharmacy, Pusan National University)
  • 투고 : 2011.03.10
  • 심사 : 2011.05.09
  • 발행 : 2011.06.01

초록

Brominated flame retardants (BFRs) are present in many consumer products ranging from fabrics to plastics and electronics. Wide use of flame retardants can pose an environmental hazard, which makes it important to determine the mechanism of their toxicity. In the present study, dose-dependent toxicity of tetrabromobisphenol A (TBBPA), a flame retardant, was examined in male prepubertal rats (postnatal day 18) treated orally with TBBPA at 0, 125, 250 or 500 mg/kg for 30 days. There were no differences in body weight gain between the control and TBBPA-treated groups. However, absolute and relative liver weights were significantly increased in high dose of TBBPA-treated groups. TBBPA treatment led to significant induction of CYP2B1 and constitutive androstane receptor (CAR) expression in the liver. In addition, serum thyroxin (T4) concentration was significantly reduced in the TBBPA treated group. These results indicate that repeated exposure to TBBPA induces drug-metabolising enzymes in rats through the CAR signaling pathway. In particular, TBBPA efficiently produced reactive oxygen species (ROS) through CYP2B1 induction in rats. We measured 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative damage, in the kidney, liver and testes of rats following TBBPA treatment. As expected, TBBPA strongly induced the production of 8-OHdG in the testis and kidney. These observations suggest that TBBPA-induced target organ toxicity may be due to ROS produced by metabolism of TBBPA in Sprague-Dawley rats.

키워드

참고문헌

  1. Alaee, M., Arias, P., Sjödin, A. and Bergman, A. (2003). An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int., 29, 683-689. https://doi.org/10.1016/S0160-4120(03)00121-1
  2. Cariou, R., Antignac, J.P., Zalko, D., Berrebi, A., Cravedi, J.P., Maume, D., Marchand, P., Monteau, F., Riu, A., Andre, F. and Le Bizec, B. (2008). Exposure assessment of French women and their newborns to tetrabromobisphenol-A: occurrence measurements in maternal adipose tissue, serum, breast milk and cord serum. Chemosphere, 73, 1036-1041. https://doi.org/10.1016/j.chemosphere.2008.07.084
  3. Chu, S., Haffner, G.D. and Letcher, R.J. (2005). Simultaneous determination of tetrabromobisphenol A, tetrachlorobisphenol A, bisphenol A and other halogenated analogues in sediment and sludge by high performance liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A., 1097, 25-32. https://doi.org/10.1016/j.chroma.2005.08.007
  4. Darnerud, P.O. (2003). Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int., 29, 841-853. https://doi.org/10.1016/S0160-4120(03)00107-7
  5. de Wit, C.A. (2002). An overview of brominated flame retardants in the environment. Chemosphere, 46, 583-624. https://doi.org/10.1016/S0045-6535(01)00225-9
  6. EU-Report. (2005). European Union Risk Assessment Report on 2,2,6,6-tetrabromo-4,4 isopropylene diphenol (tetrabromobisphenol-A). CAS No. 79-94-7, EINECS No. 201-236-9, European Chemicals Bureau, Ispra, Italy.
  7. Fernandes, A., Dicks, P., Mortimer, D., Gem, M., Smith, F., Driffield, M., White, S. and Rose, M. (2008). Brominated and chlorinated dioxins, PCBs and brominated flame retardants in Scottish shellfish: methodology, occurrence and human dietary exposure. Mol. Nutr. Food Res., 52, 238-249. https://doi.org/10.1002/mnfr.200700135
  8. Fukuda, N., Ito, Y., Yamaguchi, M., Mitumori, K., Koizumi, M., Hasegawa, R., Kamata, E. and Ema, M. (2004). Unexpected nephrotoxicity induced by tetrabromobisphenol A in newborn rats. Toxicol. Lett., 150,145-155. https://doi.org/10.1016/j.toxlet.2004.01.001
  9. Germer, S., Piersma, A.H., van der Ven, L., Kamyschnikow, A., Fery, Y., Schmitz, H.J. and Schrenk, D. (2006). Subacute effects of the brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on hepatic cytochrome P450 levels in rats. Toxicology, 218, 229-236. https://doi.org/10.1016/j.tox.2005.10.019
  10. Hakk, H. and Letcher, R.J. (2003). Metabolism in the toxicokinetics and fate of brominated flame retardants--a review. Environ. Int., 29, 801-828. https://doi.org/10.1016/S0160-4120(03)00109-0
  11. Hattori-Nakakuki, Y., Nishigori, C., Okamoto, K., Imamura, S., Hiai, H. and Toyokuni, S. (1994). Formation of 8-hydroxy-2'-deoxyguanosine in epidermis of hairless mice exposed to near-UV. Biochem. Biophys. Res. Commun., 201, 1132-1139. https://doi.org/10.1006/bbrc.1994.1823
  12. Imaoka, S., Osada, M., Minamiyama, Y., Yukimura, T., Toyokuni, S., Takemura, S., Hiroi, T. and Funae, Y. (2004). Role of phenobarbital-inducible cytochrome P450s as a source of active oxygen species in DNA-oxidation. Cancer Lett., 203, 117-125. https://doi.org/10.1016/j.canlet.2003.09.009
  13. Jakobsson, K., Thuresson, K., Rylander, L., Sjödin, A., Hagmar, L. and Bergman, A. (2002). Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians. Chemosphere, 46, 709-716. https://doi.org/10.1016/S0045-6535(01)00235-1
  14. Kang, M.J., Kim, J.H., Shin, S., Choi, J.H., Lee, S.K., Kim, H.S., Kim, N.D., Kang, G.W., Jeong, H.G., Kang, W., Chun, Y.J. and Jeong, T.C. (2009). Nephrotoxic potential and toxicokinetics of tetrabromobisphenol A in rat for risk assessment. J. Toxicol. Environ. Health A., 72, 1439-1445. https://doi.org/10.1080/15287390903212907
  15. Kasai, H., Crain, P.F., Kuchino, Y., Nishimura, S., Ootsuyama, A. and Tanooka, H. (1986). Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis, 7, 1849-1851. https://doi.org/10.1093/carcin/7.11.1849
  16. Kawamoto, T., Sueyoshi, T., Zelko, I., Moore, R., Washburn, K. and Negishi, M. (1999). Phenobarbotal-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol. Cell. Biol., 19, 6318-6322.
  17. Kawashiro, Y., Fukata, H., Omori-Inoue, M., Kubonoya, K., Jotaki, T., Takigami, H., Sakai, S. and Mori, C. (2008). Perinatal exposure to brominated flame retardants and polychlorinated biphenyls in Japan. Endocr. J., 55, 1071-1084. https://doi.org/10.1507/endocrj.K08E-155
  18. Kitamura, S., Jinno, N., Ohta, S., Kuroki, H. and Fujimoto, N. (2002). Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A. Biochem. Biophys. Res. Commun., 293, 554-559. https://doi.org/10.1016/S0006-291X(02)00262-0
  19. Kitamura, S., Suzuki, T., Sanoh, S., Kohta, R., Jino, N., Sugihara, K., Yoshihara, S., Fujimoto, N., Watanabe, H. and Ohta, S. (2005). Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol. Sci., 84, 249-259. https://doi.org/10.1093/toxsci/kfi074
  20. Lee, B.M. and Santella, R.M. (1988). Quantitation of protein adducts as a marker of genotoxic exposure: immunologic detection of $benzo({\alpha})pyrene--globin$ adducts in mice. Carcinogenesis, 9, 1773-1777. https://doi.org/10.1093/carcin/9.10.1773
  21. Legler, J. and Brouwer, A. (2003). Are brominated flame retardants endocrine disruptors? Environ. Int., 29, 879-885. https://doi.org/10.1016/S0160-4120(03)00104-1
  22. Maglich, J.M., Watson, J., McMillen, P.J., Goodwin, B., Willson, T.M. and Moore, J.T. (2004). The nuclear receptor CAR is regulator of thyroid hormone metabolism during caloric restriction. J. Biol. Chem., 279, 19832-19838. https://doi.org/10.1074/jbc.M313601200
  23. Meerts, I.A., van Zanden, J.J., Luijks, E.A., van Leeuwen-Bol, I., Marsh, G., Jakobssen, E., Bergman, A. and Brouwer, A. (2000). Potent competitive interations of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol. Sci., 56, 95-104. https://doi.org/10.1093/toxsci/56.1.95
  24. Mihara, M. and Uchiyama, M. (1978) Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem., 86, 271-278. https://doi.org/10.1016/0003-2697(78)90342-1
  25. Mikamo, E., Harada, S., Nishikama, J. and Nishihara, T. (2003). Endocrine disruptors induce cytochrome P450 by affecting transcriptional regulation via pregnane X receptor. Toxicol. Appl. Pharmacol., 193, 66-72. https://doi.org/10.1016/j.taap.2003.08.001
  26. Morris, S., Allchin, C.R., Zegers, B.N., Haftka, J.J., Boon, J.P., Belpaire, C., Leonards, P.E., van Leeuwen, S.P. and de Boer, J. (2004). Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. Environ. Sci. Technol., 38, 5497-5504. https://doi.org/10.1021/es049640i
  27. Nelson, D.R., Koymans, L., Kamataki, T., Stegeman, J.J., Feyereisen, R., Waxman, D.J., Waterman, M.R., Gotoh, O., Coon, M.J., Estabrook, R.W., Gunsalus, I.C. and Nebert, D.W. (1996). P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 6, 1-42. https://doi.org/10.1097/00008571-199602000-00002
  28. Omura, T. and Sato, R. (1964). The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem., 239, 2370-2378.
  29. Ronisz, D., Finne, E.F. and Karlsson, H. (2004). Effects of the brominated flame retardants hexabromocyclododecane (HBCCD), and tetrabromobisphenol A (TBBPA), on hepatic enzymes and other biomarkers in juvenile rainbow trout and feral eelpout. Aquat. Toxicol., 69, 229-245. https://doi.org/10.1016/j.aquatox.2004.05.007
  30. Schauer, U.M., Volkel, W. and Dekant, W. (2006). Toxicokinetics of tetrabromobisphenol A in humans and rats after oral administration. Toxicol. Sci., 91, 49-58. https://doi.org/10.1093/toxsci/kfj132
  31. Schussler, G.C. (2000). The thyroxine-binding proteins. Thyroid, 10, 141-149. https://doi.org/10.1089/thy.2000.10.141
  32. Sedlak, J. and Lindsay, R.H. (1968). Estimation of total protein-bound and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Arch. Biochem., 25, 192-205. https://doi.org/10.1016/0003-2697(68)90092-4
  33. Shen, H.M., Yang, C.F., Ding, W.X., Liu, J. and Ong, C.N. (2001). Superoxide radical-initiated apoptotic signalling pathway in selenite-treated HepG(2) cells: mitochondria serve as the main target. Free. Radic. Biol. Med., 30, 9-21. https://doi.org/10.1016/S0891-5849(00)00421-4
  34. Shi, H., Wang, X., Luo, Y. and Su, Y. (2005). Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in carassius auratus. Aquat. Toxicol., 74, 365-371. https://doi.org/10.1016/j.aquatox.2005.06.009
  35. Sjodin, A., Patterson, D.G. Jr. and Bergman, A. (2003). A review on human exposure to brominated flame retardants--particularly polybrominated diphenyl ethers. Environ. Int., 29, 829-839. https://doi.org/10.1016/S0160-4120(03)00108-9
  36. Swales, K. and Negishi, M. (2004). CAR, driving into the future. Mol. Endocrinol., 18, 1589-1598. https://doi.org/10.1210/me.2003-0397
  37. Szymanska, J.A., Piotrowski, J.K. and Frydrych, B. (2000). Hepatotoxicity of tetrabromobisphenol A: effect of repeated dosage in rats. Toxicology, 142, 87-95.
  38. Tasaki, T., Takasuga, T., Osako, M. and Sakai, S. (2004). Substance flow analysis of brominated flame retardants and related compounds in waste TV sets in Japan. Waste Manag., 24, 571-580. https://doi.org/10.1016/j.wasman.2004.02.008
  39. Uchiyama, M. and Mihara, M. (1978). Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem., 86, 271-278. https://doi.org/10.1016/0003-2697(78)90342-1
  40. Vranckx, R., Rouaze, M., Savu, L., Nunez, E.A., Beaumont, C. and Flink, I.L. (1990). The hepatic biosynthesis of rat thyroxine binding globulin (TBG): demonstration, ontogenesis, and up-regulation in experimental hypothyroidism. Biochem. Biophys. Res. Commun., 167, 317-322. https://doi.org/10.1016/0006-291X(90)91767-M
  41. Xia, J., Liao, L., Sarkar, J., Matsumoto, K., Reddy, J.K., Xu, J. and Kemper, B. (2007). Redundant enhancement of mouse consititutive androstane receptor transactivation by p160 coactivator family members. Arch. Biochem. Biophys., 468, 49-57. https://doi.org/10.1016/j.abb.2007.09.005
  42. Xie, W., Yeuh, M.F., Radomionska-Pandya, A., Saini, S.P., Neglishi, Y., Bottroff, B.S., Cabrera, G.Y., Tukey, R.H. and Evans, R.M. (2003). Control of steroid, heme, and carcinogen metabolism by nuclear pregnae X receptor and constitutive androstane receprtor. Proc. Natl. Acad. Sci. U.S.A., 100, 4150-4155. https://doi.org/10.1073/pnas.0438010100
  43. WHO/ICPS. (1995). Environmental Health Criteria 172: Tetrabromobisphenol A and Derivatives. World Health Organization, Geneva, Switzerland.

피인용 문헌

  1. vol.35, pp.7, 2015, https://doi.org/10.1002/jat.3079
  2. Oxidative stress and renal toxicity after subacute exposure to decabrominated diphenyl ether in Wistar rats pp.1614-7499, 2015, https://doi.org/10.1007/s11356-015-5921-5
  3. Biological effects of new-generation dialkyl phosphinate flame retardants and their hydrolysates in BALB/C mice vol.32, pp.5, 2017, https://doi.org/10.1002/tox.22383
  4. vol.52, pp.7, 2017, https://doi.org/10.1080/10934529.2017.1294964