DOI QR코드

DOI QR Code

Isoflavone Concentrations and Composition of Soybean Varieties Grown in Upland and Lowland Regions of Vietnam

  • Cong, Luong Chi (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University) ;
  • Seguin, Philippe (Department of Plant Science, McGill University - Macdonald Campus) ;
  • Khanh, Tran Dang (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University) ;
  • Kim, Eun-Hye (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University) ;
  • Ahn, Joung-Kuk (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University) ;
  • Chung, Ill-Min (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University)
  • Received : 2011.01.11
  • Published : 2011.03.30

Abstract

Health beneficial properties of soybean [Glycine max (L.) Merr.] isoflavones are well known. The objectives of this study were to determine and compare the isoflavone composition and concentrations of soybean varieties grown in different cultivated regions of Vietnam (i.e., upland and lowland). Total and individual isoflavone composition and concentrations were determined by high-performance liquid chromatography (HPLC). Total isoflavone concentrations varied from 1153 to $6604{\mu}g\;g^{-1}$ and averaging $3354{\mu}g\;g^{-1}$ across environments and varieties. In the lowland region, the highest total isoflavones concentration was observed in M103 cultivar ($5653{\mu}g\;g^{-1}$) and the lowest in VX9-3 ($1153{\mu}g\;g^{-1}$), whereas in the upland region the highest and lowest concentrations were in M103 ($6604{\mu}g\;g^{-1}$) and DT93 ($1938{\mu}g\;g^{-1}$), respectively. Across varieties, average total isoflavones concentration was higher in the upland than lowland region (3728 vs. $2980{\mu}g\;g^{-1}$). The malonylglucosides and acetylglucosides concentrations in upland soybean varieties were higher than those from the lowland region. Despite the presence of Genotype (G) x Environment (E) interactions, varieties with consistently high (M103) and low (VX9-3, DT93) isoflavone concentrations across environments were identified. This is the first report of isoflavones in Vietnamese soybean varieties, revealing large variation in isoflavones concentration and profile among different varieties and cultivated regions. Results will be useful in selecting high-isoflavones soybean varieties for growth in tropical regions.

Keywords

References

  1. Akitha Devi, M. K., G. Mahendranath, G. Sakthivelu, P. Giridhar, T. Rajasekaran, and G. A. Ravishankar. 2009. Functional attributes of soybean seeds and products, with reference to isoflavone content and antioxidant activity. Food Chemistry. 114: 771-776. https://doi.org/10.1016/j.foodchem.2008.10.011
  2. Anthony, M. S., T. B. Clarkson, and J. K. Williams. 1998. Effects of soy isoflavones on atherosclerosis: Potential mechanisms. Am. J. Clin. Nutr. 68: 1390-1393.
  3. Aussenac, T., D. A. Lacombe, J. Dayde. 1998. Quantification of isoflavones by capillary zone electrophoresis in soybean seeds: effect of variety and environment. Am. J. Clin. Nutr. 68: 1480-1485.
  4. Carrao-Panizzi, M. C., A. D. Beleia, K. Kitamura, and M. C. N. Oliveira.. 1999. Effects of genetics and environment on isoflavone content of soybean from different regions of Brazil. Pesq. Argopec. Bras. 34: 1787-1795.
  5. Chiechi, L. M., G. Secreto, M. D'Amore, M. Fanelli, E. Venturelli, F. Cantatore, T. Valerio, G. Laselva, and P. Loizzi. 2002. Efficacy of a soy rich diet in preventing postmenopausal osteoporosis: The Menfis randomized trial. Maturitas. 42: 295-300. https://doi.org/10.1016/S0378-5122(02)00158-5
  6. Chung, I. M., K. H. Kim, J. K. Ahn, J. K. H. Y. Chi, H. and J. O. Lee. 2000. Screening for antioxidative activity in soybean local cultivars in Korea. Korean J. Crop Sci. 45: 328-334.
  7. Hoeck, J. A., W. R. Fehr, P. A. Murphy, and G. A. Welke. 2000. Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40: 48-51. https://doi.org/10.2135/cropsci2000.40148x
  8. Holt, S. 1997. Soya: The health food of the next millennium. Korean Soybean Dig. 14: 77-90.
  9. Kennedy, A. R. 1995. The envidence for soybean products as cancer preventive agents. J. Nutr 125: 733-743.
  10. Kennedy, A. R. 1998. The Bowman-Birk inhibitor from soybeans as an anticarcinogenic agent. Am. J. Clin. Nutr. 68: 1406-1412.
  11. Kim, S. H., W. S. Jung, J. K. Ahn, and I. M. Chung. 2005. Analysis of isoflavone concentration and composition in soybean (Glycine max L.) seeds between the cropping year and storage for three years. Eur. Food Res. Technol. 220: 207-214. https://doi.org/10.1007/s00217-004-1048-5
  12. Kitamura, K., K. Igita, A. Kikuchi, S. Kudou, and K. Okubo. 1991. Low isoflavone content in early maturing cultivars, so called summer-type soybeans (Glycine max (L.) Merrill). Japanese J. Breeding. 41: 651-654. https://doi.org/10.1270/jsbbs1951.41.651
  13. Koratkar, R. and A. V. Rao. 1997. Effect of soya bean saponins on azoxymethane: induced preneoplastic lesions in the colon of mice. Nutr. Cancer. 27: 206-209. https://doi.org/10.1080/01635589709514526
  14. Kris-Etherton, P. M., K. D. Hecker, A. Bonanome, S. M. Coval, A. E. Binkoski, K. F. Hilpert, A. E. Griel, and T. D. Etherton. 2002. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113: 71-88. https://doi.org/10.1016/S0002-9343(01)00995-0
  15. Kuo, S. M. 1997. Dietary flavonoid and cancer prevention: evidence and potential mechanics (Critical review). Oncogenesis. 8: 47-69.
  16. Lee, K. W., H. J. Wang, P. A. Murphy, and S. Hendrich. 1995. Soybean isoflavone extract suppresses early but not later promotion of hepatocarcinogenesis by Phenobarbital in female rat liver. Nutr. Cancer. 24: 267-278. https://doi.org/10.1080/01635589509514416
  17. Lee, S. J., I. M. Chung, J. K. Ahn, J. T. Kim, S. H. Kim, S. J. Hahn. 2003a. Variation in isoflavones of soybean cultivars with location and storage duration. J. Agric. Food Chem. 51: 3382-3389. https://doi.org/10.1021/jf0261405
  18. Lee, S. J., W. K. Yan, J. K. Ahn, and I. M. Chung. 2003b. Effects of year, site, genotype, and their interactions on various soybean isoflavones. Field Crop Res. 81: 181-192. https://doi.org/10.1016/S0378-4290(02)00220-4
  19. Liang, H. Z., S. F. Wang, T. F. Wang, H. Y. Zhang, S. J. Zhao, and M. C. Zhang. 2007. Genetic analysis of embryo, cytoplasm and material effects and their environment interactions for isoflavone content in soybean [Glycine max (L.) Merr.]. Agric. Sci. in China. 6: 1051-1059. https://doi.org/10.1016/S1671-2927(07)60146-1
  20. Lichtenstein, A. H. 1998. Soy protein, isoflavones and cardiovascular disease risk. J. Nutr. 128: 1589-1592.
  21. Lozovaya, V. V., A. V. Lygin, A. V. Ulanov, R. L. Nelson, J. Dayde, and J. M. Widholm. 2005. Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop. Sci. 45: 1934-1940. https://doi.org/10.2135/cropsci2004.0567
  22. Messina, M. J., V. Persky, K. D. R. Setchell, and S. Barnes. 1994. Soy intake and cancer risk: a review of the in-vitro and in-vivo data. Nutr. Cancer. 21: 113-131. https://doi.org/10.1080/01635589409514310
  23. National General Statistics Office. Statistic report of National Agriculture, Forestry and Agriculture, 2008. http://www.gso.gov.vn/ default.aspx?tabid=430&idmid=3 (in Vietnamese, accessed March 2009.
  24. Peterson, T. G. and S. Barnes. 1993. Genistein and biochanin A inhibit the growth of human prostate cancer cell but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate. 22: 335-345. https://doi.org/10.1002/pros.2990220408
  25. SAS Institute. SAS User's Guide, Basics, 5th ed; SAS Institute: Cary, NC, 2000.
  26. Seguin, P., R. Bodo, and A. M. Al-Tawaha. 2007. Soybean isoflavones: Factors affecting concentrations in seeds. In: Advances in Medicinal Plant Research. Acharya SN, Thomas JE eds. p65-80. Research Signpost, Trivandrum, Kerala, India. ISBN 81-7736-255-0.
  27. Seguin, P., W. Zheng, D. L. Smith, and W. Deng. 2004. Isoflavone content of soybean cultivars grown in eastern Canada. J. Sci. Food Agric. 84: 1327-1332. https://doi.org/10.1002/jsfa.1825
  28. Setchell, K. D. R. and A. Cassidy. 1999. Dietary isoflavones: biological effects and relevance to human health. J. Nutr. 3: 758-767.
  29. Slavin, J., D. Jacobs, and L. Marquart. 1997. Whole grain consumption and chronic disease: Protective mechanisms. Nutr. Cancer. 27: 14-21. https://doi.org/10.1080/01635589709514495
  30. Suthar, A. C., M. M. Banavalikar, and M. K. Biyani. 2001. Pharmacological activities of Genistein, an isoflavone from soy (Glycine max): Part II-Anti-cholesterol activity, effects on osteoporosis & menopausal symptoms. Indian J. Exp. Biol. 39: 520-525.
  31. Tsukamoto, C., S. Shimada, K. Igita, S. Kudou, M. Kokubun, K. Okubo, and K. Kitamura. 1995. Factors affecting isoflavone content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43: 1184-1192. https://doi.org/10.1021/jf00053a012
  32. Vesper, H., E. M. Schmelz, M. N. Nickolova, D. L. Dillehay, D. V. Lynch, and A. H. Merrill. 1999. Sphingolipids in food and the emerging importance of sphingolipidis to nutrition. J. Nutr. 129: 1239-1250.
  33. Wei, H., R. Browen, Q. Cai, S. Barnes, and Y. Wang. 1995. Antioxidant and antipromotional effects of the soybean in isoflavone genistein. Proc. Soc. Enper. Biol. Med. 1: 124-130.

Cited by

  1. Protein, Fatty acid, and Isoflavone Contents of Soybean Lines Tolerant to Acid Soil vol.30, pp.3, 2018, https://doi.org/10.12719/KSIA.2018.30.3.167