DOI QR코드

DOI QR Code

높은 안테나 상관도를 갖는 다중입출력 공간 다중화 시스템을 위한 통계적 프리코딩 기법

Statistical Precoder Design for Spatial Multiplexing Systems in Correlated MIMO Fading Channels

  • 문성현 (고려대학교 전기전자전파공학부 무선통신 연구실) ;
  • 김진성 (고려대학교 전기전자전파공학부 무선통신 연구실) ;
  • 이인규 (고려대학교 전기전자전파공학부 무선통신 연구실)
  • 투고 : 2010.09.02
  • 심사 : 2011.03.21
  • 발행 : 2011.03.31

초록

다중입출력 공간 다중화 시스템은 송수신 안테나 간 상관도가 있는 채널에서 심각한 성능 열화를 겪는다. 본 논문에서는 ML (maximum likelihood) 수신기를 결합한 다중입출력 무선통신 환경을 위해, 송신단에서 채널상관 행렬 정보만을 활용한 새로운 통계적 프리코딩 기법을 소개한다. 우리는 다차원 심볼 성상의 최소 유클리디언 거리를 최대화하는 두 가지 간단한 형식의 (closed-form solution) 프리코더, 회전 변환 및 파워 로딩 기법을 제안한다. 또한, 제안한 기법을 선형 zero-forcing (ZF) 수신기에 확장 적용하여 성능을 향상시키는 방법을 고안한다. 실험 결과를 통해 제안하는 기법은 ML 수신기 및 ZF 수신기에서 기존의 기법에 비하여 각각 2dB 및 8dB의 비트 에러율 성능 이득을 제공함을 확인할 수 있다.

It has been shown that the performance of multiple-input multiple-output (MIMO) spatial multiplexing systems is significantly degraded when spatial correlation exists between transmit and receive antenna pairs. In this paper, we investigate designs of a new statistical precoder for spatial multiplexing systems with maximum likelihood (ML) receiver which requires only correlation statistics at the transmitter. Two kinds of closed-form solution precoders based on rotation and power allocation are proposed by means of maximizing the minimum E tlidean distance of joint symbol constellations. In addition, we extend our results to linear receivers for correlated channels. We provide a method which yields the same profits from the proposed precoders based on a simple zero-forcing (ZF) receiver. The simulation shows that 2dB and 8dB gains are achieved for ML and ZF systems with two transmit antennas, respectively, compared to the conventional systems.

키워드

참고문헌

  1. G. J. Foschini and M. Gans, "On limits of wireless communication in a fading ea ironment when using multiple antennas", Wireless Persg ea Communications, fa. 6, pp.311-335, March 1998 https://doi.org/10.1023/A:1008889222784
  2. I. E. Telatar, "Capacity of Multi-antenna Gaussian Channels", Eur. Trans. Telecom., Vol. 10, pp.595-595, November 1999
  3. D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, "Fading Correlation and Its Effect on the Capacity of Multielement Antenna Systems," IEEE Transactions on Communications, Vol.48, pp.502-513, March 2000 https://doi.org/10.1109/26.837052
  4. M. T. Ivrlac, W. Utschick, and J. A. Nossek, "Fading Correlations in Wireless MIMO Communication Systems," IEEE Journal on Selected Areas in Communications, Vol.21, pp.819-828, June 2003 https://doi.org/10.1109/JSAC.2003.810348
  5. A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications. The Edinburgh Building, Cambridge, UK: Cambridge University Press, 2003
  6. G. J. Foschini, "Layered Space-Time Architecture for Wireless Communications in a Fading Environment When Using Multielement Antennas," Bell Labs. Tech. J., Vol.1, pp.41-59, 1996
  7. H. Liu, G. Li, X. Cheng and D. Li, "Performance Analysis Framework of ML MIMO Receiver over Correlated Rayleigh Fading Channel," in Proc. IEEE ICC '06, pp.4137-4142, June 2006
  8. H. Liu, Y. Song and R. C. Qiu, "The Impact of Fading Correlation on the Error Performance of MIMO Systems Over Rayleigh Fading Channels," IEEE Transactions on Wireless Communications, Vol.4, pp.2014-2019, September 2005 https://doi.org/10.1109/TWC.2005.853903
  9. M. R. McKay and I. B. Collings, "Error Performance of MIMO-BICM with Zero- Forcing Receivers in Spatially-Correlated Rayleigh Channels," IEEE Transactions on Wireless Communications, Vol.6, pp.787-792, March 2007 https://doi.org/10.1109/TWC.2006.05259
  10. 3rd Generation Partnership Project (3GPP) TS 36.211: Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8), May 2009
  11. IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems; Advanced Air Interface (Working Document), June 2009
  12. D. A. Gore, R. W. Heath, and A. J. Paulraj, "Transmit Selection in Spatial Multiplexing Systems," IEEE Communications Letters, Vol.11, pp.491-493, November 2002
  13. R. U. Nabar, H. Bolcskei, and A. Paulraj, "Transmit Optimization for Spatial Multiplexing in the Presence of Spatial Fading Correlation," in Proc. IEEE Globecom '01, Vol.11, pp.131-135, November 2001
  14. J. Akhtar and D. Gesbert, "Spatial Multiplexing Over Correlated MIMO Channels With a Closed-Form Precoder," IEEE Transactions on Wireless Communications, Vol.4, pp.2400-2409, September 2005. https://doi.org/10.1109/TWC.2005.853915
  15. X. Zhu and R. D. Murch, "Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System," IEEE Transactions on Communications, Vol.50, pp.187-191, February 2002. https://doi.org/10.1109/26.983313
  16. G. H. Golub and C. F. V. Loan, Matrix Computations. Third Edition, The Johns Hopkins University Press, Baltimore and London, 1996.
  17. J. M. Cioffi, 379A Class note: Signal Processing and detection. Stanford Univ.
  18. A. M. Chan and I. Lee, "A New Reduced-Complexity Sphere Decoder for Multiple Antenna Systems," in Proc. IEEE ICC '02, pp.460-464, April 2002.
  19. J.-S. Kim, S.-H. Moon, and I. Lee, "A New Reduced Complexity ML Detection Scheme for MIMO Systems," in Proc. IEEE ICC '09, pp.1-5, June 2009.
  20. M. K. Varanasi, "Group Detection for Synchronous Gaussian Code- Division Multiple-Access Channels," IEEE Transactions on Information Theory, Vol.41, pp.1083-1096, July 1995. https://doi.org/10.1109/18.391251
  21. I. Lee and C.-E. W. Sundberg, "Wireless OFDM Systems with Multiple Transmit and Receive Antennas with Bit-Interleaved Coded Modulation," IEEE Wireless Communications, Vol.13, pp.80-87, June 2006.
  22. J. Jung, H. Lee, S.-H. Moon, and I. Lee, "Enhanced Groupwise Detection with a New Receiver Combiner for Spatial Multiplexing MIMO Systems," in Proc. IEEE VTC '08 Fall, September 2008.