Acknowledgement
Supported by : 창원대학교
References
- Richter, E. and Neumann, T., "Saturation effects in salient pole synchronous motors with permanent magnet excitation," Proc. of Int. Conf. Electrical Machines, Vol. 2, pp. 603-606, 1984.
- El-Serafi, A., Abdallah, A., El-Sherbiny, M. and Badawy, E., "Experimental study of the saturation and the cross-magnetizing phe-nomenon in saturated synchronous machines," IEEE Trans. Energy Conv., Vol. 3, No. 4, pp. 815-823, 1988. https://doi.org/10.1109/60.9357
- Yang, Y. and Zhou, C., "Robust Adaptive Fuzzy Control for Permanent Magnet Synchronous Servomotor Drives," International Journal of Intelligent Systems, Vol. 20, No. 2, pp. 153-171, 2005. https://doi.org/10.1002/int.20060
- Kumar, R., Gupta, R. A. and Surjuse, R. S., "High- Performance SVPWM-VCIM Drive with Adaptive Neuro-Fuzzy Speed Controller," International Journal of Computer and Electrical Engineering, Vol. 2, No. 1, pp. 1793-8163, 2010.
- Aissaoui, A. G., Abid, M., Tahour, A. and Megherbi, A. C., "A Fuzzy Logic and Variable Structure Control for Permanent Magnet Synchronous Motors," International Journal of Systems Control, Vol. 1, No. 1, pp. 13-21, 2010.
- Boldea, I., Paicu, M. C., Andreescu, G. D. and Blaabjerg, F., "Active flux orientation vector sensorless control of IPMSM," Proc. of IEEE Optimization of Electrical and Electronic Equipment, pp. 161-168, 2008.
- Chy, Md. M. I. and Uddin, M. N., "Nonlinear Control of Interior Permanent Magnet Synchronous Motor Incorporating Flux Control," Proc. of IEEE Electrical and Computer Engineering, pp. 815-818, 2006.
- Uddin, M. N. and Rahma, M. A., "High-Speed Control of IPMSM Drives Using Improved Fuzzy Logic Algorithms," IEEE Transactions on Industrial Electronics, Vol. 54, No. 1, pp. 190-199, 2007.
- Lin, P.-T., Wang, C.-H. and Lee, T.-T., " Time- Optimal Control of T-S Fuzzy Models via Lie Algebra," IEEE Transactions on Fuzzy Systems, Vol. 17, No. 4, pp. 737-749, 2009.
- Lee, H. J., Kim, H. B., Joo, Y. H., Chang, W. and Park, J. B., "A new intelligent digital redesign for T-S fuzzy systems: global approach," IEEE Transactions on Fuzzy Systems, Vol. 12, No. 2, pp. 274-284, 2004. https://doi.org/10.1109/TFUZZ.2003.819826
- Juang, C.-F. and Hsieh, C.-D., "A Locally Recurrent Fuzzy Neural Network With Support Vector Regression for Dynamic-System Modeling," IEEE Transactions on Fuzzy Systems, Vol. 18, No. 2, pp. 261-273, 2010.
- Zhu, T. X., Tso, S. K. and Lo, K. L., "Wavelet-based fuzzy reasoning approach to power-quality disturbance recognition, " IEEE Transactions on Power Delivery, Vol. 19, No. 4, pp. 1928-1935, 2004. https://doi.org/10.1109/TPWRD.2004.832382
- Moutinho, M. N., Da Costa, C. T., Barra, W. and Barreiros, J. A. L., "Identification, digital control and fuzzy logic techniques applied to a synchronous generator," IEEE Latin America Transactions, Vol. 7, No. 2, pp. 141-150, 2009.
- Wong, K. W., Kóczy, L. T., Gedeon, T. D., Chong, A. and Tikk, D., "Improvement of the cluster searching algorithm in Sugeno and Yasukawa's qualitative modeling," Lect. Notes Comput. Sci., Vol. 2206, pp. 536-549, 2001.
- Hathaway, R. J. and Bezdek, J. C., " Switching regression models and fuzzy clustering," IEEE Trans. on Fuzzy Syst., Vol. 1, No. 3, pp. 195-204, 1993. https://doi.org/10.1109/91.236552
- Kim, E., Park, M., Ji, S. and Park, M., "A new approach to fuzzy modeling," IEEE Trans. on Fuzzy Syst., Vol. 5, No. 3, pp. 328-337, 1997. https://doi.org/10.1109/91.618271
- Kim, E., Park, M., Kim, S. and Park, M., "A transformed input-domain approach to fuzzy modeling," IEEE Trans. on Fuzzy Syst., Vol. 6, No. 4, pp. 596-604, 1998. https://doi.org/10.1109/91.728458
- Kung, C. C. and Su, J. Y., "Affine Takagi-Sugeno fuzzy modeling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion," IET Control Theory & Applications, Vol. 1, No. 5, pp. 1255-1265, 2007. https://doi.org/10.1049/iet-cta:20060415
- Li, C., Zhou, J., Xiang, X., Li, Q. and An, X., "T-S fuzzy model identification based on a novel fuzzy cregression model clustering algorithm," Engineering Applications of Artificial Intelligence, Vol. 22, No. 4-5, pp. 646-653, 2009. https://doi.org/10.1016/j.engappai.2009.02.003