DOI QR코드

DOI QR Code

Photo-Electrochemical Hydrogen Production Over P- and B- Incorporated $TiO_2$ Nanometer Sized Photo-Catalysts

P와 B 이온이 함유된 나노 티타니아 광촉매의 광 전기화학적 수소 제조 성능

  • Received : 2011.02.28
  • Accepted : 2011.03.11
  • Published : 2011.03.31

Abstract

For effectively photochemical hydrogen production, P (negative semiconductor) and B (positive semiconductor) ions (0.1, 0.2, 0.5, and 1.0 mol%) incorporated $TiO_2$ (P- and B-$TiO_2$) nanometer sized particles were prepared using a solvothermal method as a photocatalyst. The characteristics of the synthesized P- and B-$TiO_2$ photocatalysts were analyzed by X-ray Diffraction (XRD), Transmission electron microscopy (TEM), W-visible spectroscopy (UV-Vis), and Photoluminescence spectra (PL). The evolution of $H_2$ from methanol/water (1:1) photo-splitting over B-$TiO_2$ photocatalysts was enhanced compared to those over pure $TiO_2$ and P-$TiO_2$ photocatalysts; 0.42 mL of $H_2$ gas was evolved after 10 h when 0.5 g of a 1.0 mol% B-$TiO_2$ catalyst was used.

본 연구에서는 보다 효율적인 광 전기화학적 수소제조를 위하여 광촉매로써 티타니아 골격에 positive-type 반도체로써 B 이온, negative-type 반도체로써 P 이온을 삽입하여 고온 고압에서 용매열(solvothermal)법으로 P- 그리고 B-$TiO_2$ 나노 입자를 제조하였다. 제조한 P-$TiO_2$와 B-$TiO_2$의 물리적 특성은 X-ray 회절분석법, 투과전자현미경, 자외선-가시선 분광광도계, 발광분광계를 통해 확인하였다. 메탄올/물(1:1) 광분해 수소제조 실험 결과, 1.0 mol% B-$TiO_2$ 광촉매가 순수 anatase $TiO_2$ 광촉매 보다 활성이 향상되었으며, 0.5 g의 1.0 mol% B-$TiO_2$ 촉매를 사용한 경우 10시간 반응 시 0.42 mL의 수소가 발생되었다.

Keywords

References

  1. Winter, C.-J., "Hydrogen energy- Abundant, efficient, clean: A debate over the energy-system-of-change," Int J Hydrogen Energy, 34, S1-S52 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.063
  2. Conte, M., Prosini, P. P., and Passerini, S., "Overview of energy/ hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials," Mater Sci Eng B, 108, 2-8 (2004). https://doi.org/10.1016/j.mseb.2003.10.107
  3. Cui, W., Feng, L., Xu, C., Lu, S., and Qiu F., "Hydrogen production by photocatalytic decomposition of methanol gas on $Pt/TiO_2$ nano-film," Catal Commun., 5, 533-536 (2004). https://doi.org/10.1016/j.catcom.2004.06.011
  4. Miwa, T., Kaneco, S., Katsumata, H., Suzuki, T., Ohta, K., Verma, S. C., and Sugihara K., "Photocatalytic hydrogen production from aqueous methanol solution with $CuO/Al_2O_3/ TiO_2$ nanocomposite," Int J Hydrogen Energy, 35, 6554-6560 (2010). https://doi.org/10.1016/j.ijhydene.2010.03.128
  5. Xu, Y., Xu, H., Li, H., Xia, J., Liu, C., and Liu, L., "Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO," J. Alloys. Compd., 509, 3286-3292 (2011). https://doi.org/10.1016/j.jallcom.2010.11.193
  6. Kanade, K. G., Baeg, J.-O., Mulik, U. P., Amalnerkar, D. P., and Kale, B. B., "Nano-CdS by polymer- inorganic solid-state reaction: Visible light pristine photocatalyst for hydrogen generation," Mater. Res. Bull., 41, 2219-2225 (2006). https://doi.org/10.1016/j.materresbull.2006.04.031
  7. Kozak, O., Praus, P., Ko i, K., and Klementova, M., "Preparation and characterization of ZnS nanoparticles deposited on montmorillonite," J. Colloid. Interface. Sci., 352, 244-251 (2010). https://doi.org/10.1016/j.jcis.2010.09.016
  8. Yamashita, H., Nose, H., Kuwahara, Y., Nishida, Y., Yuan, S., and Mori, K., "$TiO_2$ photocatalyst loaded on hydrophobic Si3N4 support for efficient degradation of organics diluted in water," Appl. Catal. A Gen., 350, 164-168 (2008). https://doi.org/10.1016/j.apcata.2008.08.015
  9. Ohno, T., Miyamoto, Z., Nishijima, K., Kanemitsu, H., and Xueyuan, F., "Sensitization of photocatalytic activity of S- or N-doped $TiO_2$ particles by adsorbing $Fe^{3+}$ cations," Appl. Catal. A Gen., 302, 62-68 (2006). https://doi.org/10.1016/j.apcata.2005.12.010
  10. Yin, S., Ihara, K., Aita, Y., Komatsu, M., and Sato, T., "Visible- light induced photocatalytic activity of $TiO_{2-x}A_y$ (A=N, S) prepared by precipitation route," J. Photochem. Photobiol. A Chem., 179, 105-114 (2006). https://doi.org/10.1016/j.jphotochem.2005.08.001
  11. Jang, J. S., Kim, H. G., Borse, P. H., and Lee, J. S., "Simultaneous hydrogen production and decomposition of $H_2S$ dissolved in alkalinewater over $CdS-TiO_2$ composite photocatalysts under visible light irradiation," Int. J. Hydrogen. Energy, 32, 4786-4791 (2007). https://doi.org/10.1016/j.ijhydene.2007.06.026
  12. Lee, Y., Chae, J., and Kang, M., "Comparison of the photovoltaic efficiency on DSSC for nanometer sized $TiO_2$ usinga conventional sol-gel and solvothermal methods," J. Ind. Eng.Chem., 16, 609-614 (2010). https://doi.org/10.1016/j.jiec.2010.03.008
  13. Baia, L., Peter, A., Cosoveanu, V., Indrea, E., Baia, M., Popp, J., and Danciu, V., "Synthesis and nanostructural characterization of $TiO_2$ aerogels for photovoltaic devices," Thin Solid Films, 511-512, 512-516 (2006). https://doi.org/10.1016/j.tsf.2005.12.024
  14. Burton, A. W., Ong K.,, Rea, T., and Chan, I. Y., "On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems," Microporous Mesoporous Mater., 117, 75-90 (2009). https://doi.org/10.1016/j.micromeso.2008.06.010
  15. Kumar, R., Ali, S. A., Mahur, A. K., Virk, H. S., Singh, F., Khan, S. A., Avasthi, D. K., and Prasad, R., "Study of optical band gap and carbonaceous clusters in swift heavy ion irradiated polymers with UV-Vis spectroscopy," Nucl. Instrum. Methods Phys. Res. B, 266, 1788-1792 (2008). https://doi.org/10.1016/j.nimb.2008.01.010