DOI QR코드

DOI QR Code

Dehydration of D-xylose into Furfural Using Sulfonic Acid Modified ${\gamma}-Al_2O_3$

황산기가 도입된 감마 알루미나를 이용한 자일로즈 탈수화 반응을 통한 푸르푸랄의 생성

  • Kim, Eun-Gyu (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Saet-Byul (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Park, Eun-Duck (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Kim, Sang-Wook (Department of Molecular Science and Technology, Ajou University)
  • 김은규 (아주대학교 분자과학기술학과) ;
  • 김샛별 (아주대학교 에너지시스템학부) ;
  • 박은덕 (아주대학교 에너지시스템학부) ;
  • 김상욱 (아주대학교 분자과학기술학과)
  • Received : 2011.01.04
  • Accepted : 2011.03.14
  • Published : 2011.03.31

Abstract

All types of ${\gamma}-Al_2O_3$ such as acidic, neutral and basic forms were chemically modified with (3-mercaptopropyl) trimethoxysilane (3-MPTMS) and oxidized by 30 wt% $H_2O_2$ solution. As a result, sulfonic acid modified ${\gamma}-Al_2O_3$ catalysts were obtained. Their formation was achieved more easily by treating 1M HCl solution. Their catalytic performance was tested by dehydration reaction of D-xylose to furfural. The sulfonic acid modified ${\gamma}-Al_2O_3$ catalysts showed high conversion (>90%) of D-xylose, and the selectivity to furfural was increased with the amount of sulfonic acid anchored on the catalyst.

산성, 중성, 염기성의 감마알루미나에 (3-mercaptopropyl) trimethoxysilane (3-MPTMS)를 알루미나 기공 내에 도입하고 30 wt% 과산화수소수를 이용하여 황산기가 결합된 감마알루미나를 합성하였다. 1 M HCl 용액을 이용하여 3-MPTMS의 도입을 좀 더 용이하게 하였다. 합성된 촉매는 자일로즈 탈수화 반응을 통한 푸르푸랄 생성반응에 적용하여 촉매 특성을 분석하였다. 모든 촉매 반응에서 우수한 자일로즈 전환률을 보였고, 황산가가 도입된 촉매가 푸르푸랄의 선택도를 높이는 결과를 보였다.

Keywords

References

  1. Zeitsch, K. J., "The Chemistry and Technology of Furfural and Its Many By-Products, 1st ed., in: Sugar Series," Elsevier, TheNetherlands, 13, 2000.
  2. Ahmad, T., Kenne, L., Olsson, K., and Theander, O., "2-Furaldehyde and Formic acid from Pentoses in Slightly Acidic Deuterium Oxide Studied by 1H NMR Spectroscopy," Carbohydrate Res., 276(2), 309-320 (1995). https://doi.org/10.1016/0008-6215(95)00176-T
  3. Dias, A. S., Pillinger, M., and Valente, A. A., "Dehydration of Xylose into Furfural over Micro-Mesoporous Sulfonic Acid Catalysts," J. Catal., 229(2), 414-423 (2005). https://doi.org/10.1016/j.jcat.2004.11.016
  4. Antal Jr, M. J., Leesomboon, T., Mok, W. S., and Rochards, G. N., "Mechanism of formation of 2-furaldehyde from Dxylose," Carbohyd. Res., 217, 71-85 (1991). https://doi.org/10.1016/0008-6215(91)84118-X
  5. Moreaua, C., Belgacemb, M. N., and Gandinib, A., "Recent Catalytic Advances in the Chemistry of Substituted Furans from Carbohydrates and in the Ensuing Polymers," Top. Catal., 27(1-4), 11-30 (2004). https://doi.org/10.1023/B:TOCA.0000013537.13540.0e
  6. Cunha-Silva, L., Lima, S., Ananias, D., Silva, P., Mafra, L., Carlos, L. D., Pillinger, M., Valente, A. A., Paz, F. A. A., and Rocha, J., "Multi-functional rare-earth hybrid layered networks: photoluminescenceand catalysis studies," J. Mater. Chem., 19, 2618-2632 (2009). https://doi.org/10.1039/b817381h
  7. Dias, A. S., Lima, S., Pillinger, M., and Valente, A. A., "Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural," Carbohydrate Res., 341, 2946-2953 (2006). https://doi.org/10.1016/j.carres.2006.10.013
  8. Dias, A. S., Lima, S., Carriazo, D., Rives, V., Pillinger, M., and Valente A. A., "Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-xylose into furfural," J. Catal., 244, 230-237 (2006). https://doi.org/10.1016/j.jcat.2006.09.010
  9. Dias, A. S., Pillinger M., and Valente, A. A., "Liquid phase dehydration of D-xylose in the presence of Keggin-type heteropolyacids," Appl. Catal. A, 285, 126-131 (2005). https://doi.org/10.1016/j.apcata.2005.02.016
  10. Kim, Y. -C., and Lee, H. S., "Selective Synthesis from Xylose with Supercritical Carbon Dioxide and Solid Acid Catalyst," J. Ind. Eng. Chem., 7(6), 424-429 (2001).
  11. Mamman, A. S., Lee, J. -M., Kim, Y. -C., Hwang, I., Park, N. -J., Hwang, Y. K., Jang, J. -S., and Hwang, J. -S., "Furfural: Hemicellulose/xylose-derived biochemical," Biofuels, Bioprod., Bioref., 2, 438-454 (2008). https://doi.org/10.1002/bbb.95
  12. Trueba, M., and Trasatti, S. P., "γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects," Eur. J. Inorg. Chem., 2005(17), 3393-3403 (2005). https://doi.org/10.1002/ejic.200500348
  13. Wilson, S. J., and Stacey, M. H., "The porosity of aluminum oxide phases derived from well-crystallized boehmite: Correlated electron microscope, adsorption, and porosimetry studies," J. Colloid Interface Sci., 82(2), 507-517 (1981). https://doi.org/10.1016/0021-9797(81)90392-1
  14. Pu, X., Jiang, Z., Hu, B., and Wang, H. "γ-MPTMS modified nanometer-sized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu, Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry," J. Anal. At. Spectrom., 19, 984-989 (2004). https://doi.org/10.1039/b403389b
  15. Saravanamurugan, S., Sujandi, Prasetyanto, E. A., and Park, S. E., "Liquid-Phase Reaction of 20-Hydroxyacetophenone and Benzaldehyde over SO3H-SBA-15 Catalysts: Influence of Micro wave and Thermal effects," Micropor. Mesopor. Mater., 112(1-3), 97-107 (2008). https://doi.org/10.1016/j.micromeso.2007.09.013
  16. Benesi, H. A., "Acidity of Catalyst Surfaces. I. Acid Strength from Colors of Adsorbed Indicators," J. Am. Chem. Soc., 78(21), 5490-5494 (1956). https://doi.org/10.1021/ja01602a008
  17. Schneider, P., "Adsorption Isotherms of Microporous-Mesoporous Solids Revisited," Appl. Catal. A: Gen., 129(2), 157- 165 (1995). https://doi.org/10.1016/0926-860X(95)00110-7