Expression Pattern of Skeletal-Muscle Protein Genes and Cloning of Parvalbumin mRNA in Dark-banded Rockfish (Sebastes inermis)

볼락(Sebastes inermis) 근육단백질 유전자의 성장단계별 발현 양상과 parvalbumin 유전자 클로닝

  • 장요순 (한국해양연구원 동해연구소 동해특성연구부)
  • Received : 2010.11.19
  • Accepted : 2010.12.28
  • Published : 2011.03.31

Abstract

Differentially Expressed Gene (DEG) was obtained from Differential Display Reverse Transcription (DDRT)-PCR using Annealing Control Primer (ACP) to search and clone genes related to developmental stages of Sebastes inermis. By using 120 ACPs, the nucleotide sequences obtained from 16 DEGs showing higher expression in 6-month-old skeletal muscle than 18-month-old ones and from 22 DEGs displaying stronger expression in 18-month-old than 6-month-old were analyzed and BLAST was conducted. The results identified that DEGs shared 69~95% homology with genes of parvalbumin (PVALB), nucleoside diphosphate kinase (NDK) B, tropomyosin (TPM), troponin I (TnI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), muscle-type creatine kinase (CKM2), small EDRK-rich factor 2 (SERF2), adenosine monophosphate deaminase (AMPD), Trimeric intracellular cation channel type A (TRICA), Rho GTPase-activating protein 15 (ARHGAP15), S-formylglutathione hydrolase (Esterase D; ESD), heat shock protein 70 (hsp70), type 1 collagen alpha 2 (COL1A2), glutathione S-transferase, Mid1-interacting protein 1 (Mid1lip1), myosin light chain 1 (MYL1), sarcoplasmic/endoplasmic reticulum calcium ATPase 1B (SERCA1B), and ferritin heavy subunit (FTH1). Expression pattern by developmental stage of DEG14 and PVALB exhibiting strong expression in 6-month-old skeletal muscle was investigated using real time PCR. Expression was reduced as Sebastes inermis grew. Expression of PVALB gene was extremely low after 6 months of age. Expression of CKM2 showed higher expression in 18-month-old skeletal muscle than in 6-month-old muscles, and increased continuously until 4 years old, after which CKM2 expression became gradually reduced. By analysis of tissue-specific expression patterns of DEG, DEG14 was expressed mainly in skeletal muscle, liver, kidney and spleen tissues, whereas PVALB expression was expressed in skeletal muscle and kidney, but not in liver and spleen tissues. CKM2 was expressed in skeletal muscle, kidney, and spleen tissues, but not in liver tissues. PVALB gene was composed of 110 amino acids, which constituted 659 bp nucleotides. The results reported here demonstrate that the expression patterns of parvalbumin and CKM2 could be used as molecular markers for selecting fishes exhibiting fast growth.

ACP (annealing control primer)를 사용하여 DDRT (differential display reverse transcription)-PCR 방법으로 볼락의 성장단계에 따라 발현량 차이를 나타내는 DEG (differentially expressed gene)를 확보하였다. ACP 120개를 분석하여 18개월령 근육조직에서보다 6개월령 근육조직에서 발현량이 많은 DEG 16개와 6개월령 근육조직에서보다 18개월령 근육조직에서 발현량이 더 많은 DEG22개의 염기서열을 분석하였다. DEG 염기서열을 BLAST 검색한 결과, parvalbumin (PVALB) 등 18개의 유전자(PVALB, NDKB, TPM, TnI, GAPDH, CKM2, factor 2 SERF2, AMPD, TRICA, ARHGAP15, ESD, hsp70, COL1A2, GST, Midllip1, MYL1, SERCA1B, FTH1)와 69~95%의 상동성을 나타냈다. Real time PCR 분석법으로 6개월령 근육조직에서 발현량이 많은 DEG14와 PVALB 유전자의 성장단계별 발현양상을 조사한 결과, 볼락이 성장함에 따라 발현량이 감소하였으며, 특히 PVALB 유전자는 6개월령 이후에는 발현량이 극히 적었다. 6개월령 근육조직에서보다 18 개월령 근육조직에서 발현량에서 많았던 CKM2 유전자는 성장함에 따라 발현량이 계속 증가하였고, 4세 이후에는 발현량이 감소하였다. DEG의 조직특이적 발현양상을 분석한 결과, DEG14는 근육, 간, 신장, 및 비장조직에서 발현되었으며, PVALB 유전자는 근육과 신장조직에서 발현되었고, 간과 비장조직에서는 발현되지 않았다. CKM2 유전자는 근육, 신장 및 비장조직에서 발현되었고, 간 조직에서는 발현되지 않았다. PVALB 유전자의 mRNA 크기는 659 bp 이며, 110개의 아미노산으로 구성되어 있다. Parvalbumin과 CKM2 유전자는 성장속도가 빠른 어류 선발에 이용할 수 있는 분자마커 개발에 활용하고자한다.

Keywords

References

  1. Arif, S.H. 2009. A $Ca^{2+}$-binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology. BioEssays, 31: 410-421. https://doi.org/10.1002/bies.200800170
  2. Arif, S.H., M. Jabeen and A. Hasnain. 2007. Biochemical characterization and thermostable capacity of parvalbumins: the major fish-food allergens. J. Food Biochem., 31: 121-137. https://doi.org/10.1111/j.1745-4514.2007.00104.x
  3. Benzonana, G., L. Kohler and E.A. Stein. 1974. Regulatory proteins of crayfish tail muscle. Biochim. Biophy. Acta, 368: 247-258. https://doi.org/10.1016/0005-2728(74)90153-4
  4. Berchtold, M.W., H. Brinkmeier and M. Muntener. 2000. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol. Rev., 80: 1216-1265.
  5. Berchtold, M.W., P. Epstein, A.L. Beaudet, M.E. Payne, C.W. Heizmann and A.R. Means. 1987. Structural organization and chromosomal assignment of the parvalbumin gene. J. Biol. Chem., 262: 8696-8701.
  6. Biggs, J., E. Hersperger, P.S. Steeg, L.A. Liotta and A. Shearn. 1990. A Drosophila gene that is homologous to a mammalian gene associated with tumor metastasis codes for a nucleoside diphosphate kinase. Cell, 63: 933-940. https://doi.org/10.1016/0092-8674(90)90496-2
  7. Brownridge, P., L. Vieira de Mello, M. Peters, L. McLean, A. Claydon, A.R. Cossins, P.D. Whitfield and I.S. Young. 2009. Regional variation in parvalbumin isoform expression correlates with muscle performance in common carp (Cyprinus carpio). J. Exp. Biol., 212: 184-193. https://doi.org/10.1242/jeb.021857
  8. Chauvigne, F., C. Cauty, C. Rallière and P.Y. Rescan. 2005. Muscle fiber differentiation in fish embryos as shown by in situ hybridisation of a large repertoire of muscle specific transcripts. Dev. Dyn., 233: 659-666. https://doi.org/10.1002/dvdy.20371
  9. Chen, Y., Q. Zhang, J. Qi, Z. Wang, X. Wang, Y. Sun, Q. Zhong, S. Li and C. Li. 2010. Cloning and stage-specific expression of CK-M1 gene during metamorphosis of Japanese flounder, Paralichthys olivaceus. China. J. Ocean. Limnol., 28: 558-564. https://doi.org/10.1007/s00343-010-9023-4
  10. Chikou, A., F. Huriaux, P. Laleye, P. Vandewalle and B. Focant. 1997. Isoform distribution of parvlabumins and of some myofibrillar proteins in adult and developing Chrysichthys auratus (Geoffroy St. Hilaire, 1808) (Pisces, Cloroteidae). Arch. Physiol. Biochem., 105: 611-617. https://doi.org/10.1076/apab.105.6.611.3280
  11. Chuang, D.M., C. Hough and V.V. Senatorov. 2005. Glyceraldehyde- 3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol., 45: 269-290. https://doi.org/10.1146/annurev.pharmtox.45.120403.095902
  12. Dawson, D.M., H.M. Eppenberger and M.E. Eppenberger. 1968. Multiple molecular forms of creatine kinases. Ann. N.Y. Acad. Sci., 151: 616-626. https://doi.org/10.1111/j.1749-6632.1968.tb11922.x
  13. Focant, B., F. Huriaux, P. Vandewalle, M. Castelli and G. Goessens. 1992. Myosin, parvalbumin and myofibril expression in barbel (Barbus barbus L.) lateral white muscle during development. Fish Physiol. Biochem., 10: 133-143. https://doi.org/10.1007/BF00004524
  14. Focant, B., F. Mélot, S. Collin, A. Chikou, P. Vandewalle and F. Huriaux. 1999. Muscle parvalbumin isoforms of Clarias gariepinus, Heterobranchus longifilis and Chrysichthys auratus: isolation, characterisation and expression during development. J. Fish Biol, 54: 832-851.
  15. Focant, B., P. Vandewalle and F. Huriaux. 2003. Expression of myofibrillar proteins and parvalbumin isoforms during the development of a flatfish, the common sole Solea solea: comparison with the turbot Scophthalmus maximus. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 135: 493-502. https://doi.org/10.1016/S1096-4959(03)00116-7
  16. Focant, B., S. Collin, P. Vandewalle and F. Huriaux. 2000. Expression of myofibrillar proteins and parvalbumin isoforms in white muscle of the developing turbot Scophthalmus maxi-mus (Pisces, Pleuronectiformes). Basic Applied Myol., 10: 269-278.
  17. Gillis, J.M. 1985. Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Biochim. Biophys. Acta, 811: 97-145. https://doi.org/10.1016/0304-4173(85)90016-3
  18. Huriaux, F., F. Melot, P. Vandewalle, S. Collin and B. Focant. 1996. Parvalbumin isotypes in white muscle from three teleost fish: Characterization and their expression during development. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 113: 475-484. https://doi.org/10.1016/0305-0491(95)02066-7
  19. Huriaux, F., P. Vandewalle and B. Focant. 2002. Immunological study of muscle parvalbumin isotypes in three African catfish during development. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 132: 579-584. https://doi.org/10.1016/S1096-4959(02)00071-4
  20. Huriaux, F., S. Collin, P. Vandewalle, J.C. Philippart and B. Focant. 1997. Characterization of parvalbumin isotypes in white muscle from the barbel and expression during development. J. Fish Biol., 50: 821-836. https://doi.org/10.1111/j.1095-8649.1997.tb01975.x
  21. Johnston, I.A. 1999. Muscle development and growth: potential implications for flesh quality in fish. Aquaculture, 177: 99- 115. https://doi.org/10.1016/S0044-8486(99)00072-1
  22. Kim, Y.J., C.I. Kwak, Y.Y. Gu, I.T. Hwang and J.Y. Chun. 2004. Annealing control primer system for identification of differentially expressed genes on agarose gels. Bio Techniques, 36: 424-426, 428, 430.
  23. Lees-Miller, J.P. and D.M. Helfman. 1991. The molecular basis for tropomyosin isoform diversity. BioEssays, 13: 429-437. https://doi.org/10.1002/bies.950130902
  24. Lluisa F., E. Perdigueroa, A.R. Nebredab and P. Munoz-Canovesa. 2006. Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends in Cell Biology, 16: 36-44 https://doi.org/10.1016/j.tcb.2005.11.002
  25. MacLeod, A.R. and C. Gooding. 1988. Human hTM-alpha gene: expression in muscle and nonmuscle tissue. Mol. Cell. Biol., 8: 433-440. https://doi.org/10.1128/MCB.8.1.433
  26. Mommsen, T.P. 2001. Review: paradigms of growth in fish. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 129: 207-219. https://doi.org/10.1016/S1096-4959(01)00312-8
  27. Morisaki, T., R.L. Sabina and E.W. Holmes. 1990. Adenylate deaminase: a multigene family in humans and rats. J. Biol. Chem., 265: 11482-11486.
  28. Poompuang, S. and D. Panprommin. 2010. Expression of four muscle proteins at different growth stages of Günther's walking catfish Clarias macrocephalus. Aquaculture Research, 41: e144-e154. https://doi.org/10.1111/j.1365-2109.2010.02487.x
  29. Sanuki, H., M. Hata and M. Takeucki. 2003. Distribution of calcium bound to parvalbumin in water-soluble fractions in some fish muscles. Nippon Suisan Gakkaishi, 69: 387-392. https://doi.org/10.2331/suisan.69.387
  30. Scharf, J.M., M.G. Endrizzi, A. Wetter, S. Huang, T.G. Thompson, K. Zerres, W.F. Dietrich, B. Wirth and L.M. Kunkel. 1998. Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nature Genet., 20: 83-86. https://doi.org/10.1038/1753
  31. Venkatesh B., B.H. Tay, G. Elgar and S. Brenner. 1996. Isolation, characterization and evolution of nine pufferfish (Fugu rubripes) actin genes. J. Mol. Biol., 259: 655-665. https://doi.org/10.1006/jmbi.1996.0347
  32. Wade, R., R. Eddy, T.B. Shows and L. Kedes. 1990. cDNA sequence, tissue-specific expression, and chromosomal mapping of the human slow-twitch skeletal muscle isoform of troponin I. Genomics, 7: 346-357. https://doi.org/10.1016/0888-7543(90)90168-T
  33. Zawadowska, B. and I. Supikova. 1992. Parvalbumin in skeletal muscles of teleot (Tinca tinca L. and Misgurnus fossilis L.). Histochemical and immunohistochemical study. Folia Histochem. Cytobiol., 30: 63-68.
  34. Zhu J., Y. Sun, F.Q. Zhao, J. Yu, R. Craig and S. Hu. 2009. Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms. BMC Genomics, 10: 117. https://doi.org/10.1186/1471-2164-10-117