DOI QR코드

DOI QR Code

Characteristics of the Hydraulic Conductivity of Carbonate Aquifers in Gangwon Province

강원도 탄산염지역 대수층의 수리전도도 특성

  • Park, Young-Yun (Research Institute for Earth Resources, Kangwon National University) ;
  • Lee, Jin-Yong (Department of Geology, Kangwon National University) ;
  • Lim, Hong-Gyun (Department of Geology, Kangwon National University) ;
  • Park, Yu-Chul (Department of Geophysics, Kangwon National University)
  • Received : 2011.03.08
  • Accepted : 2011.03.16
  • Published : 2011.03.31

Abstract

We investigated the flow properties of groundwater in areas of carbonate rocks at Yeongwol and Jeongseon, Gangwon Province, based on measurements of hydraulic conductivity. Existing hydraulic conductivity data were compiled from 46 wells in the study area. These wells were sunk close to Golji stream and the Joyang and Dong rivers, which flow through the study area. The hydraulic conductivities range from 0.004 to 1.1 m/day, and show a gradually decreasing trend with decreasing well depth (y=-0.003x - 0.927, $r^2$=0.129). The study area was classified into zone A (< 0.1 m/day), zone B (0.1-1.0 m/day), and zone C (> 1 m/day) according to hydraulic conductivity. Zones A, B, and C make up 87% (n = 40), 11 % (n = 5), and 2% (n = 2) of the surface of the study area, respectively. Among the three zones, zone A contains few fractures whereas zone C contains many fractures. These results indicate that groundwater flow in carbonate regions is strongly influenced by the fracture network.

이 연구는 영월과 정선 내 탄산염암지역 지하수의 수리전도도를 이용하여 탄산염암지역 지하수의 유동특성을 알아보기 위해 수행하였다. 이 연구를 위해 영월과 정선 내 탄산염암지역에서 개발된 46개 관정의 수리전도도 자료를 수집하였다. 이들 관정들은 주로 연구지역을 북동-남서 방향으로 가로지르는 골지천, 조양강 및 동강 주변으로 개발되었으며 이들의 수리전도도는 0.004-1.1 m/day의 범위를 보였다. 수리전도도는 관정의 심도가 깊어질수록 점차 줄어드는 경향(y=-0.003x-0.927, $r^2$=0.129)을 보였다. 연구지역은 수리전도도에 따라 A(< 0.1 m/day), B(0.1-1 m/day) 및 C(> 1 m/day) 구역으로 구분하였다. A, B 및 C 구역은 각각 연구지역의 87%(n = 40), 11 %(n = 5) 및 2%(n = 1)에 해당되었다. A 구역은 단열의 영향을 거의 받지 않았고 B 구역은 단열의 영향을 조금 받았으며 C 구역은 단열의 영향을 많이 받았다. 이 연구 결과는 탄산염지역 지하수의 유동이 주로 단열에 의해서 영향을 받고 있음을 보여주었다.

Keywords

References

  1. 국가지하수정보센터, http://www.gims.go.kr.
  2. 국토해양부, 2010, 2010년 지하수조사연보, 국토해양부, 637p.
  3. 김옥준, 이하영, 이대성, 윤석규, 1973, 남한 대석회암통의층서 및 지질구조. 광산지질학회지, 6, 81-114.
  4. 대한지질학회, 1999, 한국의 지질. 시그마프레스, 802p.
  5. 우경식, 박수인, 정공수, 이창진, 2002, 한반도 고생대 퇴적암류에 대한 고찰. 위해 박용안교수 정년퇴임기념논문집, 한림원, 83-120.
  6. 정창희, 이하영, 고인석, 이종덕, 1979, 한국 하부 고생대층의 층서와 퇴적환경 (특히 정선지역을 중심으로), 학술원 논문집(자연과학편), 18, 123-169.
  7. 태백산지구지하자원조사단, 1962, 태백산지구 지질도, 대한지질학회, 107p.
  8. 한국지질자원연구원 지질정보시스템, http://geoinfo.kigam. re.kr.
  9. Bakalowicz, M., 2005, Karst groundwater: a challenge for new resources. Hydrogeology Journal, 13, 148-160. https://doi.org/10.1007/s10040-004-0402-9
  10. Cesano, D., Bagtzoglou, A.C. and Olofsson, B., 2003, Quantifying fractured rock hydraulic heterogeneity and groundwater inflow prediction in underground excavations: the heterogeneity index. Tunnelling and Underground Space Technology, 18, 19-34. https://doi.org/10.1016/S0886-7798(02)00098-6
  11. Cole, J., Coniglio, M. and Gautrey, S., 2009, The role of buried bedrock valley on the development of karstic aquifers in flat-lying carbonate bedrock: insights from Guelph, Ontario, Canada. Hydrogeology Journal, 17, 1411-1425. https://doi.org/10.1007/s10040-009-0441-3
  12. Eisenlohr, L., Bouzelboudjen, M., Kiraly, L. and Rossier, Y., 1997, Numerical versus statistical modeling of natural response of a karst hydrogeological system. Journal of Hydrology, 202, 244-262. https://doi.org/10.1016/S0022-1694(97)00069-3
  13. Ford, D.C. and Ewers, R.O., 1978, The development and Limestone caves in the dimensions of length and depth. Canadian Journal of Earth Sciences, 15, 1783-1798. https://doi.org/10.1139/e78-186
  14. Gaswirth, S.B., Budd, D.A. and Crawford, B.R., 2006, Textural and stratigraphic controls on fractured dolomite in a carbonate aquifer system, Ocala limestone, westcentral Florida. Sedimentary Geology, 184, 241-254. https://doi.org/10.1016/j.sedgeo.2005.11.010
  15. Hisakoshi, S., 1943, Geology of Seizen District, Kogendo, Tyosen. Journal of Geological Society of Japan, 50, 269-277. https://doi.org/10.5575/geosoc.50.269
  16. Johnston, R.H. and Bush, P.W., 1988, Summary of the hydrology of the Floridan Aquifer System in Florida and in parts of Georgia, South Carolina, and Alabama. U.S. Geological Survey Professional Paper, 1403-A.
  17. Motyka, J., Pulido-Bosch, A. and Gisbert, B.J., 1998, Matrix hydrogeological properties of Devonian carbonate rocks of Olkusz (Southern Poland). Journal of Hydrology, 211, 140-150. https://doi.org/10.1016/S0022-1694(98)00229-7
  18. Palmer, A.N., 1991, Origin and morphology of limestone caves. GSA Bulletin, 103, 1-21. https://doi.org/10.1130/0016-7606(1991)103<0001:OAMOLC>2.3.CO;2
  19. Peterson, E.W. and Wicks, C.M., 2003, Characterization of the physical and hydraulic properties of the sediment in karst aquifers of the Springfield Plateau, Central Missouri, USA. Hydrogeology Journal, 11, 357-367. https://doi.org/10.1007/s10040-003-0260-x
  20. Safko, P.S. and Hickey, J.J., 1992, A preliminary approach to the use of borehole data, including television surveys, for characterizing secondary porosity of carbonate rooks in the Floridan Aquifer System. U.S. Geological Survey Water Resources Investigation, 91-4168.
  21. White, W.B., 1988, Geomorphology and hydrology of karst terrains. Oxford University Press, New York, 464p.
  22. White, W.B., 2003, Conceptual model for karst aquifers. Speleogenesis and Evalution of Karst Aquifers, 1, 1-6.
  23. Wicks, C.M. and Herman, J.S., 1994, The effects of a confining unit on the geological evolution of ground water in the Upper Floridian aquifer system. Journal of Hydrology, 153, 139-155. https://doi.org/10.1016/0022-1694(94)90189-9
  24. Williams, A., Bloomfield, J., Griffiths, K. and Butler, A., 2006, Characterising the vertical variations in hydraulic conductivity within the Chalk aquifer. Journal of Hydrology, 330, 53-62. https://doi.org/10.1016/j.jhydrol.2006.04.036
  25. Worthington, S.R.H., 2001, Depth of conduit flow in unconfined carbonate aquifers. Geology, 29, 335-338. https://doi.org/10.1130/0091-7613(2001)029<0335:DOCFIU>2.0.CO;2
  26. Yoshimura, I., 1940, Geology of the Neietsu district, Kogendo, Tysen (Korea). Journal of Geological Society of Japan, 47, 112-122. https://doi.org/10.5575/geosoc.47.112

Cited by

  1. Status of Community Drinking Water in Korea and Implications for Appropriate Management vol.18, pp.6, 2013, https://doi.org/10.7857/JSGE.2013.18.6.056
  2. Hydrochemical characteristics of groundwater and stream water in a karst area of Samcheok, Korea vol.55, pp.1, 2019, https://doi.org/10.14770/jgsk.2019.55.1.117
  3. Spatio-Temporal Variations of Hydrochemical and Microbial Characteristics in Karst Water in Samcheok, South Korea vol.12, pp.12, 2011, https://doi.org/10.3390/w12123407
  4. Hydrochemical and Isotopic Difference of Spring Water Depending on Flow Type in a Stratigraphically Complex Karst Area of South Korea vol.9, pp.None, 2011, https://doi.org/10.3389/feart.2021.712865