DOI QR코드

DOI QR Code

Effect of Concentration of Tetraethoxysilane and Hydrochloric Acid on the Morphologies of Mesoporous Silica Microspheres

테트라에톡시실란 및 염산 농도에 따른 메조다공성 실리카 마이크로스피어의 모폴로지 변동에 관한 연구

  • Received : 2010.11.09
  • Accepted : 2010.12.16
  • Published : 2011.03.30

Abstract

Tetraethoxysilane(TEOS) as a silica precursor and hydrochloric acid as an acid catalyst have been used in a surfactant-template synthesis of micrometer-sized mesoporous silica microspheres based on the macroemulsion technique. Increase in the concentration of tetraethoxysilane of the reaction mixture has a serious destructive effect on the particle shape and pore structure. As the acid concentration increases, relatively small microspheres are formed without destroying their spherical morphology of the particles as well as the pore structures. However, due to the attractive interaction between particles in an acidic condition, strong silica agglomerates are formed, and therefore are subject to a post-ultrasonic treatment to separate into an individual single particle.

에멀션 기반의 계면활성제를 이용한 주형합성법을 이용하여 산촉매로서 염산과 실리카의 전구체인 테트라에톡시실란을 사용함으로써 메조다공성 실리카 마이크로스피어를 합성하였다. 테트라에톡시실란의 농도 증가에 의해 구형의 입자 형태가 파괴되었고, 기공구조도 크게 변하였다. 산촉매 농도 증가에 의한 구형의 입자형태 파괴 현상은 적었지만 상대적으로 작은 크기의 구형의 마이크로입자가 더 많이 생성되었다. 하지만, 산성조건에서 입자들 간의 강한 응집현상이 나타남에 따라 낱개의 분리되어 있는 단일입자를 얻기 위해서는 초음파 등의 후처리 과정이 필요하였다.

Keywords

References

  1. R. K. Iler, The Colloid Chemistry of Silica and Silicates, Cornell University Press, New York (1955).
  2. F. W. Billmeyer, Textbook of Polymer Science, pp. 546, Wiley, New York (1971).
  3. B. B. Boonstra, "Fillers: Carbon Black and Non Black", in: Rubber Technology, M. Morton, ed., 2nd ed., pp. 51, Van Nostrand-Reinhold, New York (1973).
  4. R. K. Iler, The Chemistry of Silica, pp. 582-590, Wiley, New York (1979).
  5. K. K. Unger, Porous Silica: Its Properties and Use as Support in Column Liquid Chromatography, Elsevier, New York (1979).
  6. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, "Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism", Nature, 359, pp. 710-712 (1992). https://doi.org/10.1038/359710a0
  7. 박경균, 정의창, 조혜륜, 송규석, "산화물 표면의 U(VI) 흡착에 미치는 살리실산과 피콜린산의 영향", 방사성폐기물학회지, 7(4), pp. 219-227 (2009).
  8. 조현제, 김득만, 박종길, "농축폐기물 유리화를 위한 전처리 방안 연구", 방사성폐기물학회지, 8(3), pp. 221-227 (2010).
  9. S. -H. Jung, J. -B. Kim, J. -H. Moon, K- I. Kim, S. -H. Choi and J. -H. Jin, "Surface Modification of the Core-shell Type $^{198}Au$@$SiO_{2}$ Nano Particle for an Foranic Process Media Tracing Study in Refinery/Petrochemical Industries", J. Rad. Ind., 4(2), pp. 107-111 (2010).
  10. J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing and K. K. Unger, "Recommendations for the Characterization of Porous Solids", Pure Appl. Chem., 66(8), pp. 1739-1758 (1994). https://doi.org/10.1351/pac199466081739
  11. Y. Kang, W. Shan, J. Wu, Y. Zhang, X. Wang, W . Yang and Y. Tang, "Uniform Nanozeolite Microspheres with Large Secondary Pore Architecture", J. Chem. Mater., 18(7), pp. 1861-1866 (2006). https://doi.org/10.1021/cm060084w
  12. C. S. Cundy and P. A. Cox, "The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time", Chem. Rev., 103, pp. 663-701 (2003). https://doi.org/10.1021/cr020060i
  13. J. -Y. Kim, M. -G. Song and J. -D. Kim, "Zeta Potential of Nanobubbles Generated by Ultrasonication in Aqueous Alkyl Polyglycoside Solutions", J. Colloid. Interface. Sci., 223, pp. 285-291 (2000). https://doi.org/10.1006/jcis.1999.6663
  14. M. -G. Song, J. -Y. Kim and J. -D. Kim, "The Dispersion Properties of Precipitated Calcium Carbonate Suspensions Adsorbed with Alkyl Polyglycoside in Aqueous Medium", J. Colloid. Interface. Sci., 226, pp. 83-90 (2000). https://doi.org/10.1006/jcis.2000.6815
  15. M. Duboisl, B. Dem?, T. Gulik-Krzywicki, J. -C. Dedieu, C. Vautrinl, S. D?sertl, E. Perez and T. Zemb, "Self-Assembly of Regular Hollow Icosahedra in Salt-free Catanionic Solutions", Nature, 411, pp. 672-675 (2001). https://doi.org/10.1038/35079541
  16. J. -B. Huang, B. -Y. Zhu, G. -X. Zhao and Z. -Y. Zhang, "Vesicle Formation of a 1:1 Catanionic Surfactant Mixture in Ethanol Solution", J. Am. Chem. Soc., 13(21), pp. 5759-5761 (1997).
  17. R. A. Salkar, D. Mukesh, S. D. Samant and C. Manohar, "Mechanism of Micelle to Vesicle Transition in Cationic-Anionic Surfactant Mixtures", J. Am. Chem. Soc., 14, pp. 3778-3782 (1998).
  18. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. D. Stucky, H. J. Shin and Ryong Ryoo, "Direct Imaging of the Pores and Cages of Three-Dimensional Mesoporous Materials", Nature, 408(23), pp. 449-453 (2003).
  19. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores", Science, 279 (5350), pp. 548-552 (1998). https://doi.org/10.1126/science.279.5350.548
  20. S. B. Yoon, J. -Y. Kim, J.GH. Kim, Y. J. Park, K. R. Yoon, S. -K. Park and J. -So Yu, "Synthesis of Monodisperse Spherical Silica Particles with Solid Core and Mesoporous Shell: Mesopore Channels Perpendicular to the Surface", J. Mater. Chem., 17, pp. 1758-1761 (2007). https://doi.org/10.1039/b617471j
  21. L. Qi, J. Ma, H. Cheng and Z. Zhao, "Micrometer-Sized Mesoporous Silica Spheres Grown under Static Conditions", J. Nano. Res., 10, pp. 1623-1626 (1998).
  22. C. P. Kao, H. P. Lin and C. Y. Mou, "Synthesis of Elastic Centimeter-Sized Spheres of Silica- Surfactant Mesopotous Structures", J. Phys. Chem. Solid, 62(9-10), pp. 1555-1559 (2001). https://doi.org/10.1016/S0022-3697(01)00094-4
  23. K. Kosuge, T. Murakami, N. Kikukawa and M. Takemori, "Direct Synthesis of Porous Pure and Thiol-Functional Silica Spheres through the S+X-I+ Assembly Pathway", J. Mater. Chem., 15, pp. 3184-3189 (2003). https://doi.org/10.1021/cm030225j
  24. K. Kosuge, N. Kikukawa, and M. Talcemori, "One- Step Preparation of Porous Silica Spheres from Sodium Silicate using Triblock Copolymer Templating", J. Mater. Chem., 16, pp. 4181-4186 (2004). https://doi.org/10.1021/cm0400177
  25. H. Izutsu, F. Mizukami, P. K. Nair, Y. Kiyozumi and K. Maeda, "Preparation and Characterization of Porous Silica Spheres by the Sol-Gel Method in the Presence of Tartaric Acid", J. Mater. Chem., 7(5). pp. 767-771 (1997). https://doi.org/10.1039/a607333f
  26. O. Huo, J. Feng, F. Sch th and G. D. Stucky, "Preparation of Hard Mesoporous Silica Spheres", J. Mater. Chem., 9, pp. 14-17 (1997). https://doi.org/10.1021/cm960464p
  27. H. -P. Lin and C. -Y. Mou, "Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica", Acc. Chem. Res., 35(11), pp. 927-935(2002). https://doi.org/10.1021/ar000074f
  28. A. Nol, T. Xia, L. Madler and N. Li, "Toxic Potential of Materials at the Nanolevel", Science, 311 (5761), pp. 622-627 (2010).
  29. K. W. D. Ledingham, p. McKenna and R. P. Singhal, "Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers", Science, 200 (5622), pp. 1107-1111 (2003).
  30. J. -Y. Kim, S. B. Yoon, M. H. Lee. Y. J. Park, W. H. Kim and K. Y. Jee, "The Role of Di(2- ethylhexyl)phosphoric Acid as a Cosurf'actant on the Morphology Control of Mesoporous Silica Microspheres", J. Am. Chem. Soc., 7 (11), pp. 3862-3866 (2007).
  31. S. B. Yoon, Y. S. Choi, Y. J. Park and J. Y. Kim, "Use of Pluronic F108 as a Cosurfactant in a Synthesis of Mesoporous Silica Microspheres with Bimodal Pore Size Distribution", J. Am. Chem. Soc., 8 (10), pp. 5261-5265 (2008).
  32. S. Brunauer, P. H. Emmett and E. Teller, "Adsorption of Gases in Multimolecular Layers", J. Am. Chem. Soc., 60, pp. 309-319 (1938). https://doi.org/10.1021/ja01269a023
  33. E. P. Barrett. L. G. Joyner and P. P. Halenda, "The Determination of Pore Volume and Area Distributions in Porous Substances", J. Am. Chem. Soc., 73, pp. 373-380 (1951). https://doi.org/10.1021/ja01145a126
  34. Y. Hiramatsu. Y. Oka and H. Kiyama, "Rapid Determination of the Tensile Strength of Rocks with Irregular Test Pieces", J. Min. Metall. lnst. Jpn., 81, pp. 1024-1030 (1965).
  35. M. Yoshida, H. Ogiso, S. Nakano and J. Akedo, "Compression Test System for a Single Submicron Particle", Rev. Sci. lnst., 76, pp. 093905 (2005). https://doi.org/10.1063/1.2038187
  36. J. H. Park, S. C. Chung, C. Oh, S. I. Shin, S. S. lm and S. G. Oh, "Preparation and Size Control of Spherical Silica Particles using W/O Emulsion, J. Korean. Ind. Eng. Chem., 13(6), pp. 502-508 (2002).
  37. D. G. Kang, K. D. Kim and H. T. Kim, "Silica Nanoparticles Prepared by W/O Microemulsion Method at Acid/Base Conditions, J. Korean Ind. Eng. Chem., 11(5), pp. 500-504 (2000).
  38. M. S. Kim, S. I. Seok, B. Y. Ahn, T. S. Suh and S. M. Koo, "Preparation of Hollow Silica Microspheres by W/O Emulsion Processes, J. Korean Ind. Eng. Chem., 13(2), pp. 151-155 (2002).