DOI QR코드

DOI QR Code

Dehydrocoupling of Bis(1-sila-3-butyl)benzene and 2-Phenyl-1,3-disilapropane to Polymers Using Zirconocene Combination Catalysts

  • Lee, Jun (Department of Chemistry and Nanotechnology Research Center, Chonnam National University) ;
  • Kim, Jong-Hyun (Department of Chemistry and Nanotechnology Research Center, Chonnam National University) ;
  • Mo, Soo-Yong (Department of Chemistry and Nanotechnology Research Center, Chonnam National University) ;
  • Woo, Hee-Gweon (Department of Chemistry and Nanotechnology Research Center, Chonnam National University) ;
  • Kim, Do-Heyoung (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Jun, Jin (Department of Optometry and Optic Science, Dongshin University)
  • 투고 : 2011.07.05
  • 심사 : 2011.08.31
  • 발행 : 2011.09.30

초록

The catalytic dehydrocoupling of bis(1-sila-3-butyl)benzene 1 and 2-phenyl-1,3-disilapropane 2 by $Cp_2ZrCl_2$/Red-Al and $Cp_2ZrCl_2$/n-BuLi was reported to compare their catalytic efficiency. The dehydrocoupling of monomeric silanes 1 with the $Cp_2ZrCl_2$/Red-Al and $Cp_2ZrCl_2$/n-BuLi combination catalysts produced two phases of polymers: one is a highly cross-linked insoluble solid, and the other is noncross-linked or slightly cross-linked soluble oil and could be a precursor for the solid polymer. The dehydrocoupling of 2 with the $Cp_2ZrCl_2$/n-BuLi combination catalyst similarly produced two phases of polymers. By contrast, the catalytic reaction of 2 with the $Cp_2ZrCl_2$/Red-Al combination catalyst produced a soluble polymer via redistribution/dehydrocoupling process.

키워드

참고문헌

  1. J. E. Mark, H. R. Allcock, and R. West, "Inorganic Polymers", Prentice Hall, New Jersey, 1992.
  2. S. Yajima, M. Omori, J. Hayashi, K. Okamura, T. Matsuzawa, and C. F. Liaw, "Molecular weight distribution of polycarbosilane as a starting material of the silicon carbide fiber with high tensile strength", Chem. Lett., p. 551, 1976.
  3. P. A. Bianconi and T. W. Weidman, "Poly(n-hexylsilyne): synthesis and properties of the first alkyl silicon [RSi]n network polymer", J. Am. Chem. Soc., Vol. 110, p. 2342, 1988. https://doi.org/10.1021/ja00215a077
  4. B. F. Griffing and R.West, "Contrast enhanced photoresists-processing and modeling", Polym. Eng. Sci., Vol. 23, p. 947. 1983. https://doi.org/10.1002/pen.760231706
  5. R. West, L. D. David, P. I. Djurovich, K. S. V. Stearley, and H. Y. Srinivasan, "Phenylmethylpolysilanes: formable silane copolymers with potential semiconducting properties", J. Am. Chem. Soc., Vol. 103, p. 7352, 1981. https://doi.org/10.1021/ja00414a061
  6. R. D. Miller and J. Michl, "Polysilane high polymers", Chem. Rev., Vol. 89, p. 1359, 1989. https://doi.org/10.1021/cr00096a006
  7. R. West, "The polysilane high polymers", J. Organomet. Chem., Vol. 300, p. 327, 1986. https://doi.org/10.1016/0022-328X(86)84068-2
  8. P. Trefonas III, J. R. Damewood, R. West, and R. D. Miller, "Organosilane high polymers: thermochromic behavior in solution", Organometallics, Vol. 4, p. 1318, 1985. https://doi.org/10.1021/om00126a038
  9. L. A. Harrah and J. M. Zeigler, "Electronic spectra of polysilanes", Macromolecules, Vol. 20, p. 601, 1987. https://doi.org/10.1021/ma00169a023
  10. M. Fujino, T. Hisaki, M. Fujiki, and N. Matsumoto, "Preparation and characterization of a novel organopolysilane. (3,3,3-Trifluoropropyl)methylpolysilane", Macromolecules, Vol. 25, p. 1079, 1992. https://doi.org/10.1021/ma00029a011
  11. K. Sakamoto, M. Yoshida, and H. Sakurai, "Highly ordered high-molecular weight alternating polysilylene copolymer prepared by anionic polymerization of masked disilene", Macromolecules, Vol. 23, p. 4494, 1990. https://doi.org/10.1021/ma00222a031
  12. K. Matyjaszewski, M. Cypryk, H. Frey, J. Hrkach, H. K. Kim, M. Moeller, K. Ruehl, and M. White, "Synthesis and characterization of polysilanes", J. Macromol. Sci.-Chem. A28, Vol. 11, p. 1151, 1991.
  13. E. Hengge and G. K. Litscher, "A New Electrochemical Method of Forming SiSi Bonds", Angew. Chem., Int. Ed. Engl., Vol. 15, p. 370. 1976.
  14. K. Matyjaszewski, D. Greszta, J. S. Hrkach, and H. K. Kim, "Controlled radical polymerizations: the use of alkyl iodides in degenerative transfer", Macromolecules, Vol. 28, p. 59, 1995. https://doi.org/10.1021/ma00105a007
  15. Y. Kimata, H. Suzuki, S. Satoh, and A. Kuriyama, "Electrochemical Polymerization of Hydrosilane Compounds", Organometallics, Vol. 14, p. 2506, 1995. https://doi.org/10.1021/om00005a056
  16. C. Aitken, J. F. Harrod, and U. S. Gill, "Structural studies of oligosilanes produced by catalytic dehydrogenative coupling of primary organosilanes", Can. J. Chem., Vol. 65, p. 1804, 1987. https://doi.org/10.1139/v87-303
  17. J. F. Harrod and S. S. Yun, "Silyltitanocene complexes as catalysts for the hydrogenation, isomerization, and hydrosilylation of olefins", Organometallics, Vol. 6, p. 1381, 1987. https://doi.org/10.1021/om00150a002
  18. C. Aitken, J. P. Barry, F. Gauvin, J. F. Harrod, A. Malek, and D. Rousseau, "A survey of catalytic activity of .eta.5-cyclopentadienyl complexes of Groups 4-6 and uranium and thorium for the dehydrocoupling of phenylsilane", Organometallics, Vol. 8, p. 1732, 1989. https://doi.org/10.1021/om00109a025
  19. J. F. Harrod, T. Ziegler, and V. Tschinke, "Theoretical study of $Cp_2Ti(H)(SiH_3)$ and $Cp_2TiSiH_2$ and their possible role in the polymerization of primary organosilanes", Organometallics, Vol. 9, p. 897, 1990. https://doi.org/10.1021/om00118a002
  20. H. G. Woo, J. F. Harrod, J. Henique, and E. Samuel, "Titanocene-catalyzed dehydrocoupling of silanes in the presence of phosphines. Probing a complex organometallic catalysis by EPR spectroscopy", Organometallics, Vol. 12, p. 2883, 1993. https://doi.org/10.1021/om00032a005
  21. J. Britten, Y. Mu, J. F. Harrod, J. Polowin, M. C. Baird, and E. Samuel, "Crystal structures and conformational analysis of titanocene complexes of the type $Cp_2Ti(SiHRR')PMe_3$ (R, R' = H, Me, Ph): relationships between calculated molecular structures and observed solid-state structures", Organometallics, Vol. 12, p. 2672, 1993. https://doi.org/10.1021/om00031a042
  22. H. G. Woo and T. D. Tilley, ".sigma.-Bond metathesis reactions of silicon-hydrogen and metal-silicon bonds. New routes to d0 metal silyl complexes", J. Am. Chem. Soc., Vol. 111, p. 3757, 1989. https://doi.org/10.1021/ja00192a048
  23. H. G. Woo and T. D. Tilley, "Dehydrogenative polymerization of silanes to polysilanes by zirconocene and hafnocene catalysts. A new polymerization mechanism", J. Am. Chem. Soc., Vol. 111, p. 8043. 1989. https://doi.org/10.1021/ja00202a070
  24. H. G. Woo, R. H. Heyn, and T. D. Tilley, ".sigma.-Bond metathesis reactions for $d^0$ metal-silicon bonds that produce zirconocene and hafnocene hydrosilyl complexes", J. Am. Chem. Soc., Vol. 114, p. 5698, 1992. https://doi.org/10.1021/ja00040a032
  25. H. G. Woo, J. F. Walzer, and T. D. Tilley, ".sigma.-Bond metathesis mechanism for dehydropolymerization of silanes to polysilanes by $d^0$ metal catalysts", J. Am. Chem. Soc., Vol. 114, p. 7047, 1992. https://doi.org/10.1021/ja00044a015
  26. J. P. banovetz, H. Suzuki, and R. M. Waymouth, "Dehydrogenative coupling of substituted phenylsilanes: synthesis of poly[((trifluoromethyl)phenyl)silanes]", Organometallics, Vol. 12, p. 4700, 1993. https://doi.org/10.1021/om00035a070
  27. H. G. Woo, J. F. Walzer, and T. D. Tilley, "Dehydropolymerization of bis- and tris(silyl)arenes to highly crosslinked disilanylenearylene polymers, catalyzed by [(.eta.5-$C_5H_5$)(.eta.5-$C_5Me_5$)ZrH2]2", Macromolecules, Vol. 24, p. 6863, 1991. https://doi.org/10.1021/ma00026a013
  28. T. Imori, H. G. Woo, J. F. Walzer, and T. D. Tilley, "Disilanylenearylene oligomers and polymers from dehydropolymerization of 1,4-RH2SiC6H4SiH2R (R = methyl, ethyl, and hexyl)", Chem.. Mater., Vol. 5, p. 1487, 1993. https://doi.org/10.1021/cm00034a019
  29. J. F. Harrod, "In Transformation of Organometallics into Common and Exotic Materials", Amsterdam, p. 103, 1998.
  30. Y. Mu, and J. F. Harrod, "In Inorganic and Organometllic Polymers and Oligomers", J. F. Harrod, R. M. Laine, Eds.; Kluwer Academic Publishers: Dordrecht, p. 23, 1991.
  31. V. K. Dioumaev and J. F. Harrod, "Catalytic Dehydrocoupling of Phenylsilane with "Cationlike" Zirconocene Derivatives: A New Approach to Longer Silicon Chains", Organometallics, Vol. 13, p. 1548, 1994. https://doi.org/10.1021/om00017a004
  32. V. K. Dioumaev, J. F. Harrod, Submitted for publication.
  33. T. D. Tilley, "The coordination polymerization of silanes to polysilanes by a ".sigma.-bond metathesis" mechanism. Implications for linear chain growth", Acc. Chem. Res., Vol. 26, p. 22, 1993. https://doi.org/10.1021/ar00025a004
  34. T. Imori and T. D. Tilley, "The influence of catalyst structure on the dehydropolymerization of phenylsilane", Polyhedron, Vol. 13, p. 2231, 1994. https://doi.org/10.1016/S0277-5387(00)88130-9
  35. H. G. Woo, S. Y. Kim, M. K. Han, E. J. Cho, and I. N. Jung, "Dehydrohomopolymerization and Dehydrocopolymerization of New Alkylsilanes: Synthesis of Poly(3-aryl-1-silabutanes)", Organometallics, Vol. 14, p. 2415, 1995. https://doi.org/10.1021/om00005a044