A Study on Photon Dose Calculation in 6 MV Linear Accelerator Based on Monte Carlo Method

몬테카를로 방법에 의한 6 MV 선형가속기의 광자 흡수선량 분포 평가에 관한 연구

  • Kang, Sang-Koo (Department of Radiation Science & Technology, Chonbuk National University) ;
  • Ahn, Sung-Hwan (Department of Radiation Science & Technology, Chonbuk National University) ;
  • Kim, Chong-Yeal (Department of Radiation Science & Technology, Chonbuk National University)
  • 강상구 (전북대학교 방사선과학기술학과) ;
  • 안성환 (전북대학교 방사선과학기술학과) ;
  • 김종일 (전북대학교 방사선과학기술학과)
  • Received : 2011.01.28
  • Accepted : 2011.03.18
  • Published : 2011.03.31

Abstract

In this study we modeled the varian 2100C/D linear accelerator head and multi-leaf collimator by simulation with the GEANT4 Monte Carlo toolkit. Then central axis percentage depth dose profiles and lateral dose profiles within homogeneous water phantom($50{\times}50{\times}50\;cm^3$) were evaluated with 6 MV photon beam. The simulations were performed in two stages. In the first stage, photon energy spectrum at the target were computed were computed. Then spectra data was directly irradiated in the water phantom using sampling techniques. The simulation data were compared with experimental data to evaluate the accuracy of the model. Results showed that two data were matched within 2% error boundary. The proposed method will be applied for simulation of dose calculation and dose distribution study.

본 연구에서는 Geant4 시뮬레이터를 이용하여 Varian 2100C/D 선형가속기의 헤드 부분과 다엽콜리메이터를 모델링한 후 6 MV 광자 선속에 대해 선량분포 평가의 기본이 되는 물팬텀($50{\times}50{\times}50\;cm^3$) 내에서의 심부선량백분율(Percentage depth dose)과 측면선량(lateral dose)에 대해 검출기를 이용한 측정 결과와 시뮬레이션 결과를 비교 평가하였다. 시뮬레이션은 두 단계로 나누어 진행하였다. 첫 번째 단계에서 타겟을 통해 나오는 광자의 에너지 스펙트럼을 측정하였다. 다음 단계에서 셈플링한 에너지 스펙트럼에 따라 광자를 직접 팬텀에 조사하는 방식으로 수행하였다. 실험 결과 $5{\times}5 \;cm^2$$10{\times}10\;cm^2$ 조사야에서의 심부선량백분율과 16 mm, 50 mm, 100 mm에서 측정한 측면 선량 모두 측정값과 비교하여 2% 이내의 오차를 보여 임상적으로 허용범위 안의 오차를 확인하였고 다엽콜리메이터의 정확도는 1 mm 이내의 오차를 확인 할 수 있었다. 본 연구의 연구 결과를 기초로 한 계산적 방법은 오차가 많이 발생하는 비균질성 조직 내에서의 선량분포 연구와 DICOM 데이터를 적용한 선량 계산 시뮬레이션 응용에서 활용하기 위해 선행되어야 하는 기초 자료로서 활용가치가 있다고 판단된다.

Keywords

References

  1. ICRU Report 24: Determination of absorbed dose in a patient irradiated by beams of x or gamma rays in radiotherapy procedures, International Commission on Radiation Units and Measurement, Washington, 1976
  2. ICRU Report 24: Use of computers in external beam radiotherapy procedures with high energy photons and electrons, International Commission on Radiation Units and Measurements, Washington, 1988
  3. Agostinelli S, Allison J, Amoko K, et al: GEANT4-a simulation toolkit, Nuclear Instruments and Methods in Physics Research A, 506(3), 250-303, 2003 https://doi.org/10.1016/S0168-9002(03)01368-8
  4. Pia MG.: The Geant4 Toolkit: simulation capabilities and application results, Nuclear Physics B(Proc. Suppl), 125:60-68, 2003
  5. Agostinelli S, Allison J, Amoko K, et al: Geant4 developments and applications, IEEE Transactions on Nuclear Science, 53(1), 270-278, 2006
  6. L. Archambault, L, Beaulieu, J. F. Carrier, et al: Overview of Geant4 Applications in Medical Physics, Proc. IEEE Nuclear Science Symposium, 2003
  7. Jun Deng, Ravinder Nath, CM Ma, Jenny Hai: Commissioning 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning, Med. Phys., 30(12), 3124-3134, 2003 https://doi.org/10.1118/1.1624753
  8. Bryan Bednarz, X. George Xu: A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms, Med. Phys., 35(7), 3054-3061, 2008 https://doi.org/10.1118/1.2938519
  9. Daryoush Sheikh-Bagheri, D. W. O. Rogers: Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code, Med. Phys., 29(3), 391-402, 2002 https://doi.org/10.1118/1.1445413
  10. V.N. Ivanchenko: Geant4: Physics potential for instrumentation in space and medicien, Nucl. Instrum. Methods Phys. Res. A, 525, 402-405, 2004 https://doi.org/10.1016/j.nima.2004.03.104
  11. Chauvie S, Guatelli S, Ivanchenko V, et al: Geant4 low energy electromagnetic physics, IEEE Nuclear Science Symp. Conf. Rec., Vol. 3, 1881-1885, 2004
  12. Emily Poon, Frank Verhaegen: Accuracy of the photon and electron physics in GEANT4 for radiotherapy applications, Med. phys., 32(6), 1696-1711, 2005 https://doi.org/10.1118/1.1895796
  13. Radhe Mohan, Chen Chui: Energy and angular distributions of photons from medical linac accelerators, Med. Phys., 12(5), 592-597. 1985 https://doi.org/10.1118/1.595680
  14. Andreas Baumgartner, Andreas Steurer, Franz Josef Maringer: Simulation of photon energy spectra from Varian 2100C and 2300C/D Linacs: Simplified estimates with PENELOPE Monte Carlo models, Applied Radiation and Isotopes, 67(11), 2007-2012, 2009 https://doi.org/10.1016/j.apradiso.2009.07.010
  15. Asghas Mesbahi, Michael Fix, Mahmoud Allahverdi, et al: Monte Carlo calculation of Varian 2300C/D Linac photon beam Characteristics: a comparison between MCNP4C, GEANT3 and measurements, Applied Radiation and Isotopes, 62(3) 469-477, 2005 https://doi.org/10.1016/j.apradiso.2004.07.008