Morphological Study of Storage Granules of Cotyledon Cells in Cannabis sativa cv. Chungsam

헴프종자 자엽세포의 저장과립에 관한 형태학적 연구

  • Lee, Na-Young (Department of Biological Sciences, College of Science, Konkuk University) ;
  • Kim, Dong-Min (Department of Biological Sciences, College of Science, Konkuk University) ;
  • Kim, Eun-Soo (Department of Biological Sciences, College of Science, Konkuk University)
  • 이나영 (건국대학교 이과대학 생명과학과) ;
  • 김동민 (건국대학교 이과대학 생명과학과) ;
  • 김은수 (건국대학교 이과대학 생명과학과)
  • Received : 2011.03.11
  • Accepted : 2011.03.25
  • Published : 2011.03.31

Abstract

The purpose of this study is to investigate the hemp (Cannabis sativa cv. Chungsam) seed structure and ultrastructure of food reserves by scanning and transmission electron microscopy. We examined the seed coat and embryo consisting of a hypocotyl-radicle axis and two cotyledons. The seed coat consisted of exotesta and endotesta. The exotesta was a mechanical layer with lignified and elongated cells, while endotesta of the underlying layers of the exotesta was consisted of two separated cell layers. The collapsed outer layer of endotesta showed the unique reticulate structures. In cotyledon cells, protein and lipid bodies occupied most of cytoplasm. Protein bodies varied in diameter from 1.8 to $5.0{\mu}m$ and possessed a protein matrix containing electron-dense globoid crystals. Numerous lipid bodies ranged from 0.8 to $3.0{\mu}m$ in diameter were distributed around the protein bodies. During the early stages of breakdown, protein bodies rapidly changed their shape into the granular feature, however, lipid bodies were gradually degradated and fused each other. The degeneration process of protein bodies and lipid bodies of cotyledon cells might be correlated with the reports which hemp seeds rapidly lose their ability to germinate.

헴프종자는 보통 길이 2~6 mm, 직경 2~4mm의 크기를 갖는 무배유종자로서 두껍고 단단한 외종피와 얇은 녹색의 내종피에 의해 둘러싸여 있었다. 외종피의 외부는 과피가 이를 전체적으로 둘러싸고 있었으며 과피의 표면은 부분적으로 목화된 각두가 덮고 있었다. 파편상의 각두는 과경의 부착흔적인 함몰된 기부쪽에서 합쳐있었다. 종피의 내부에는 2장의 자엽과 하배축-유근 주축으로 구성된 U자형의 구부러진 배가 발달하였다. 배의 표피조직은 크기가 다른 장방형 세포들로 구성되어 있었으며 자엽을 이루는 세포는 $1.8{\sim}5.0{\mu}m$의 단백질과립과 $0.8{\sim}3.0{\mu}m$의 지질과립이 분포하였다. 단백질과립의 중심부에는 전자밀도가 높은 globoid crystal 구조가 형성되어 있었고, 내부는 격자구조를 이루고 있었다. 한편, 단백질과립의 가장자리는 전자밀도가 낮은 이질적인 matrix로 구성되어 있었다. Globoid의 단백질과립은 이후 주변부로부터 분해되는 양상이 나타났다. 단백질과립이 분해가 일어난 뒤 지질과립은 불규칙한 형태로 분해, 소실되었다. 이들은 이후 단백질 과립과 융합되어 큰 액포를 형성하였다.

Keywords

References

  1. Al-Khalifa A, Maddaford TG, Chahine MN: Effect of dietary hempseed intake on cardiac ischemia-reperfusion injury. Amr J Phusiol 292 : 1198-1203, 2007.
  2. Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB: The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19 : 351-368, 2007. https://doi.org/10.1105/tpc.106.048033
  3. Bocsa I, Karus M: The cultivation of hemp. Hemptech, California, pp. 36-38, 1998.
  4. Borek S, Pukacka S, Michalaski K, Ratajczak L: Lipid and protein accumulation in developing seeds of three species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet. J Exp Bot 60(12) : 3453-3466, 2009. https://doi.org/10.1093/jxb/erp186
  5. Callaway JC: Hempseed as a nutritional resource: an overview. Euphytica 140 : 65-72, 2004. https://doi.org/10.1007/s10681-004-4811-6
  6. Callaway JC, Schwab U, Harvima I, Halonen P, Mykkkanen O, Hyvonen P, Jarvinen T: Efficacy of dietary hempseed oil in patients with atopic dermatitis. J Dermatolog Treat 16 : 87-94, 2005. https://doi.org/10.1080/09546630510035832
  7. Chyb S, Raghu P, Hardie RC: Polyunsaturated fatty acids activate Drosophila light-sensitive channels TRP and TRPL. Nature 397 : 255-259, 1999. https://doi.org/10.1038/16703
  8. Fahn A: Plant anatomy. pp. 490-531, Pergamon Press, Oxford,1990.
  9. Finkelstein RR, Somerville CR: Three classes of abscisic acid (ABA)-insentive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol 94 : 1172-1179, 1990. https://doi.org/10.1104/pp.94.3.1172
  10. Fosket DE: Plant Growth and development. Academic Press, San Diego, pp. 441-450, 1994.
  11. Garnczarska M, Zalewski T, Wojtyla L: A comparative study of water distribution and dehydrin protein localization in maturing pea seeds. Plant Physiol 166(12) : 1207-1220, 2008.
  12. Grotenhermen F, Russo E: Cannabis and cannabinoids. The Haworth Integrative Healing Press, New York, pp. 411-426, 2002.
  13. Huang AH: Oil bodies and oleosins in seeds. Ann Rev Plant Physiol Plant Mol Biol 43 : 177-200, 1992. https://doi.org/10.1146/annurev.pp.43.060192.001141
  14. Karimi I, Hayatghaibi H: Effect of Cannabis sativa L. seed (hempseed) on serum lipid and protein profiles of rat. Pakistan Journal Nutrition 5 : 585-588, 2006. https://doi.org/10.3923/pjn.2006.585.588
  15. Kolattukudy PE: Biopolyester membranes of plants: Cutin and suberin. Science 208 : 990-1000. 1980. https://doi.org/10.1126/science.208.4447.990
  16. Lee MJ, Park MS, Hwang S, Hong YK, Choi G, Suh YS, Han SY, Kim D, Jeun J, Oh CT, Lee SJ, Han SJ, Kim D, Kim ES, Jeong G, Cho KS: Dietary hempseed meal intake increases body growth and shortens the larva stage via the upregulation of cell growth and sterol levels in Drosophila melanogaster. Mol Cells 30 : 29-36, 2010. https://doi.org/10.1007/s10059-010-0085-0
  17. Lott JN, Goodchild DJ, Craig S: Studies of mineral reserves in pea (Pisum sativum) cotyledons using low-water-content procedures. Aust J Physiol 11 : 459-469, 1984. https://doi.org/10.1071/PP9840459
  18. Maroder H, Prego I, Maldonado S: Histochemical and ultrastructural studies on Salix alba and S. matsudana seeds. Trees 17 : 193- 199, 2003.
  19. McKechnie SW, Geer BW: Long-chain dietary fatty acids affect the capacity of Drosophila melanogaster to tolerate ethanol. J Nutr 123 : 106-116, 1993. https://doi.org/10.1093/jn/123.1.106
  20. Overgaard J, Sorensen JG, Petersen SO, Loeschcke V, Holmstrup M: Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. J Insect Physiol 51 : 1173- 1182. 2005 https://doi.org/10.1016/j.jinsphys.2005.06.007
  21. Prego I, Maldonado S, Otegui M: Seed structure and localization of reserves in Chenopodium quinoa. Ann Bot 82 : 481-488, 1998. https://doi.org/10.1006/anbo.1998.0704
  22. Prociuk M, Edel A, Gavel N, Deniset J, Ganguly R, Austria J, Ander B, Lukas A, Pierce G: the effects of dietary hempseed on cardiac ischemia/reperfusion injury in hypercholesterolemic rabbits. Exp Clin Cardiol 11 : 198-205. 2006.
  23. Rees HH: Biosynthesis of ecdysone. Comprehensive insect physiology, biochemistry and pharmacology. Pergamone Press, Oxford, pp. 249-294, 1985.
  24. Svoda JA, Thompson MJ: Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford, pp. 137- 176, 1985.
  25. Tzen JT, Cao Y, Laurent P, Ratnayake C, Huang AHC: Lipids, protein, and structure of seed oil bodies from diverse species. Plant Physiol 101 : 267-276, 1993. https://doi.org/10.1104/pp.101.1.267