DOI QR코드

DOI QR Code

Effect of Organo Nanoclay and Catalyst on the Polyesterification between Adipic Acid and Diethylene Glycol

Adipic Acid와 Diethylene Glycol의 Polyesterification에 대한 유기나노점토와 촉매의 영향

  • Park, Kyung-Kyu (Department of Chemical Engineering, Dong-A University) ;
  • Shin, Sung-Wook (Department of Chemical Engineering, Dong-A University) ;
  • Oh, Min-Ji (Department of Chemical Engineering, Dong-A University) ;
  • Lee, Sang-Ho (Department of Chemical Engineering, Dong-A University)
  • Received : 2010.12.24
  • Accepted : 2011.01.17
  • Published : 2011.03.31

Abstract

Effect of organo nanoclay (Cloisite 30B) on the polyesterification of adipic acid (AA) with diethylene glycol(DEG) was investigated with p-toluene sulfonic acid (p-TSA) (Br${\phi}$nsted acid) and butylchlorotin dihydroxide (Lewis acid) catalyst at 383 and 423 K. The initial [OH]/[COOH] molar ratio was two and the concentration of the catalysts in the reactants was 0.14 mol% based on the total reactants. The kinetics of the polyesterification was interpreted with the conversion data that was calculated from the acid values of the reactant-product mixture. The reaction rate of the polyesterification, which was catalyzed with p-TSA, exhibited the second-order dependency on AA concentration. When Butylchlorotin dihydroxide was used, the reaction rate revealed the first-order dependency on AA concentration. The activation energy of the reactions catalyzed with p-TSA and Butylchlorotin dihydroxide were calculated at 42.2 and 63.8 kJ/mol, respectively. Addition of 5 wt% Cloisite 30B to the reactant significantly diminished the activity of p-TSA, so the reaction rate decreased and the activation energy was calculated at 72.9 kJ/mol. Butylchlorotin dihydroxide catalyst maintained its activity regardless of the addition of Cloisite 30B to the reactant and the activation energy was calculated to 61.8 kJ/mol. Lewis acid catalyst, butylchlorotin dihydroxide, was more effective than Br${\phi}$nsted acid catalyst for the esterification of AA with DEG.

Adipic acid(AA)와 diethylene glycol(DEG) 사이에서 일어나는 반응의 속도에 대한 유기나노점토(Cloisite 30B)의 영향을 규명하기 위하여 383K와 423 K에서 Br${\phi}$nsted acid인 p-toluene sulfonic acid(p-TSA)와 Lewis acid인 butylchlorotin dihydroxide를 촉매로 사용하여 에스테르 반응을 수행하였다. 촉매의 양은 전체반응물의 0.14 mol%만큼 사용하였다. 반응 생성물의 산가로부터 계산된 전환율 vs. 시간의 자료를 사용하여 반응속도를 해석하였다. [OH]/[COOH] 초기 몰비가 2인 상태에서 수행되는 polyester-diol 합성반응의 속도는 p-TSA 촉매하에서는 AA에 대하여 2차 반응으로, butylchlorotin dihydroxide 촉매하에서는 AA에 대하여 1차 반응으로 잘 해석되었으며 두 반응의 활성화 에너지는 각각 42.2 kJ/mol, 63.8 kJ/mol이었다. AA와 DEG에 Cloisite 30B를 5 wt% 첨가시키면 p-TSA 촉매는 활성이 크게 줄어 반응속도가 매우 느려졌으며, 이 때 활성화 에너지는 72.9 kJ/mol로 높게 계산되었다. Butylchlorotin dihydroxide 촉매는 Cloisite 30B의 첨가에 관계없이 거의 일정한 활성을 유지하였다. Butylchlorotin dihydroxide 촉매하에서 Cloisite 30B를 첨가한 반응의 활성화 에너지는 61.8 kJ/mol로 Cloisite 30B를 첨가하지 않은 반응의 활성화 에너지보다 약간 낮았다.

Keywords

References

  1. M. Inonescu, "Chemistry and Technology of Polyols for Polyurethanes", p. 5, Rapra Technology Limited, Shropshire, UK., 2005.
  2. M. Inonescu, "Chemistry and Technology of Polyols for Polyurethanes", p. 55, p. 235, Rapra Technology Limited, Shropshire, UK, 2005.
  3. N. Clinton and P. Matlock, "Encyclopedia of Polymer Science and Engineering, Volume 6", ed. by H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, 2nd ed. p. 225, Wiley-Interscience, New York, USA, 1986.
  4. S. D. Gagnon, "Encyclopedia of Polymer Science and Engineering, Volume 6", ed. by H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, 2nd ed. p. 273, Wiley-Interscience, New York, USA, 1986.
  5. D. B. Braun, "Kirk-Othmer Encyclopedia of Chemical Technology, Volume 18", ed. by R. Kirk and D. F Othmer, 3rd ed. p. 616, John Wiley & Sons, New York, USA, 1982.
  6. R. A. Newton, "Kirk-Othmer Encyclopedia of Chemical Technology, Volume 18", ed. by R. Kirk and D. F. Othmer, 3rd ed. p. 633, John Wiley & Sons, New York, USA, 1982.
  7. M. Inonescu, "Chemistry and Technology of Polyols for Polyurethanes", p. 263, Rapra Technology Limited, Shropshire, UK, 2005.
  8. W. D. Vilar, "Chemistry and Technology of Polyurethanes", 3rd ed. Rio de Janeiro, Brazil, 2002.
  9. M. Szycher, "Szycher's Handbook of Polyurethanes", p. II-7, p. III-10, p. V-4, CRC Press, Boca Raton, FL, USA, 1999.
  10. S. Saito and H. Yamamoto, "Designer Lewis acid catalysts-bulky aluminium reagents for selective organic synthesis", Chem. Commun., 1585 (1997).
  11. J. Otera, N. Dan-oh, and H. Nozaki, "Novel Template Effects of Distannoxane Catalysts in Highly Efficient Transesterification and Esterification", J. Org. Chem., 56, 5307 (1991). https://doi.org/10.1021/jo00018a019
  12. H. E. Hoydonckx, D. E. De Vos, S. A. Chavan, and P. A. Jacobs, "Esterification and transesterification of renewables chemicals", Topics in Catalysis, 27, 83 (2004). https://doi.org/10.1023/B:TOCA.0000013543.96438.1a
  13. D. A. C. Ferreira, M. R. Meneghetti, S. M. P. Meneghetti, and C. R. Wolf , "Methanolysis of soybean oil in the presence of tin(IV) complexes", Applied Catalysis A: General, 317, 58 (2007). https://doi.org/10.1016/j.apcata.2006.10.002
  14. Technical document for Cloisite 30B (Product Bulletin), Southern Clay Products, Inc, TX, USA.
  15. P. Flory, "Kinetics of Polyesterification: A study of the Effect of Molecular Weight and Viscosity of Reaction Rate", J. Am. Chem. Soc., 61, 3334, (1939). https://doi.org/10.1021/ja01267a030