DOI QR코드

DOI QR Code

Near-field Characterization on Light Emanated from Subwavelength Plasmonic Double Slit of Finite Length

  • Kim, Ki-Young (Department of Physics, National Cheng Kung University) ;
  • Goncharenko, Anatoliy V. (Department of Physics, National Cheng Kung University) ;
  • Hong, Jian-Shiung (Institute of Electro-Optical Science and Engineering, National Cheng Kung University) ;
  • Chen, Kuan-Ren (Department of Physics, National Cheng Kung University)
  • Received : 2011.02.15
  • Accepted : 2011.05.27
  • Published : 2011.06.25

Abstract

Near-field properties of light emanated from a subwavelength double slit of finite length in a thin metal film, which is essential for understanding fundamental physical mechanisms for near-field optical beam manipulations and various potential nanophotonic device applications, is investigated by using a three-dimensional finite-difference time-domain method. Near-field intensity distribution along the propagation direction of light after passing through the slit has been obtained from the phase relation of transverse electric and magnetic fields and the wave impedance. It is found that the near field of emerged light from the both slits is evanescent, that is consistent with conventional surface plasmon localization near the metal surface. Due to the finite of the slit, the amplitude of this evanescent field does not monotonically approach to than of the infinite slit as the slit length increases, i.e. the near-field of the longer slit along the center line can be weaker than that of the shorter one.

Keywords

References

  1. T. Young, "Experiments and calculations relative to physical optics," Phil. Trans. R. Soc. Lond. 94, 1-16 (1804).
  2. T. D. Visser, "Young's interference experiment: the long and short of it," in Tribute to Emil Wolf: Science and Engineering Legacy of Physical Optics, T. P. Jannson ed. (SPIE, Bellingham, USA, 2005), Chapter 15.
  3. R. P. Feymann, R. L. Leighton, and M. Sanders, The Feymann Lectures on Physics (Addison-Wesley, MA, USA, 1965).
  4. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W.'t Hooft, D. Lenstra, and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young's experiment revisited," Phys. Rev. Lett. 94, 053901 (2005). https://doi.org/10.1103/PhysRevLett.94.053901
  5. C. H. Gan, G. Gbur, and T. D. Visser, "Surface plasmons modulate the spatial coherence of light in Young's interference experiment," Phys. Rev. Lett. 98, 043908 (2007). https://doi.org/10.1103/PhysRevLett.98.043908
  6. Z. Li, J.-S. Zhang, H.-F. Yan, and Q.-H. Gong, "Complex modulation in plasmon-assited transmission spectra of a two-slit structure," Chin. Phys. Lett. 24, 3233-3236 (2007). https://doi.org/10.1088/0256-307X/24/11/058
  7. N. Kuzmin, G. W.'t Hooft, E. R. Eliel, G. Gbur, H. F. Schouten, and T. D. Visser, "Enhancement of spatial coherence by surface plasmons," Opt. Lett. 32, 445-447 (2007). https://doi.org/10.1364/OL.32.000445
  8. T. D. Visser and R. W. Schoonover, "A cascade of singular field patterns in Young's interference experiment," Opt. Comm. 281, 1-6 (2008). https://doi.org/10.1016/j.optcom.2007.08.068
  9. R. Welti, "Light transmission through two slits: the Young experiment revisited," J. Opt. A: Pure Appl. Opt. 8, 606-609 (2006). https://doi.org/10.1088/1464-4258/8/6/017
  10. R. Gordon, "Near-field interference in a subwavelength double slit in a perfect conductor," J. Opt. A: Pure Appl. Opt. 8, L1-L3 (2006). https://doi.org/10.1088/1464-4258/8/6/L01
  11. K.-M. Chae, H.-H. Lee, S.-Y. Yim, and S.-H. Park, "Evolution of electromagnetic interference through nano-metallic double-slit," Opt. Express 12, 2870-2879 (2004). https://doi.org/10.1364/OPEX.12.002870
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, USA, 1988).
  13. S. Ravets, J. C. Rodier, B. E. Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, "Surface plasmons in the Young slit-doublet experiment," J. Opt. Soc. Am. B 26, B28-B33 (2009). https://doi.org/10.1364/JOSAB.26.000B28
  14. P. Ginzburg, E. Hirshberg, and M. Orenstein, "Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments," J. Opt. A: Pure Appl. Opt. 11, 114024 (2009).
  15. R. Zia and M. L. Brongersma, "Surface plasmon polariton analogue to Young's double-slit experiment," Nat. Nanotechnol. 2, 426-429 (2007). https://doi.org/10.1038/nnano.2007.185
  16. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, "Directional excitation of surface plasmons with subwavelength slits," Appl. Phys. Lett. 92, 101501 (2008). https://doi.org/10.1063/1.2894183
  17. Y. Wang, L. L. Wang, J. Q. Liu, X. Zhai, L. Wang, D. Xiang, Q. Wan, and B. Meng, "Plasmonic surface-wave bidirectional splitter in different angles of incident light," Opt. Comm. 283, 1777-1779 (2010). https://doi.org/10.1016/j.optcom.2009.12.072
  18. M. A. Vincenti, A. D'Orazio, M. Buncick, N. Akozbek, M. I. Bloemer, and M. Scalora, "Beam steering from resonant subwavelength slits filled with a nonlinear material," J. Opt. Soc. Am. B 26, 301-307 (2009). https://doi.org/10.1364/JOSAB.26.000301
  19. G.-G. Zheng and X.-Y. Li, "Optical beam manipulation through two metal subwavelength slits surrounded by dielectric surface gratings," J. Opt. A: Pure Appl. Opt. 11, 075002 (2009). https://doi.org/10.1088/1464-4258/11/7/075002
  20. K. R. Chen, "Focusing of light beyond the diffraction limit of half the wavelength," Opt. Lett. 35, 3763-3765 (2010). https://doi.org/10.1364/OL.35.003763
  21. K. R. Chen, W. H. Shu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, S. J. Chang, F. Y. Hung, H. H. Hwuang, and A. Y.-G. Huh, "Beyond-limit light focusing in the intermediate zone," arXiv:0901.1731.
  22. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). https://doi.org/10.1109/TAP.1966.1138693
  23. K. R. Chen, K. Y. Kim, J. S. Hong, A. V. Goncharenko, and K. J. Lee, "Near-field characterization on light emanated from subwavelength plasmonic double slits," in Proc. 4th Int. Conf. Electromagnetic Near Field Characterization and Imaging (Taipei, Taiwan, 2009), pp. 219-223.
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, USA, 1998).
  25. J. Wuenschell and H. K. Kim, "Excitation and propagation of surface plasmons in metallic nanoslit structure," IEEE Trans. Nanotech. 7, 229-236 (2008). https://doi.org/10.1109/TNANO.2007.915018
  26. M. Mansuripur, Y. Xie, A. R. Zakharian, and J. V. Moloney, "Transmission of light through slit apertures in metallic films," IEEE Trans. Magnetics 41, 1012-1015 (2005). https://doi.org/10.1109/TMAG.2004.842048
  27. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12, 6106-6121 (2004). https://doi.org/10.1364/OPEX.12.006106
  28. A. F. Pskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: a flexible freesoftware package for electromagnetic simulations by the FDTD method," Comp. Phys. Commun. 181, 687-702 (2010). https://doi.org/10.1016/j.cpc.2009.11.008
  29. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons Inc., New York, USA, 1998).

Cited by

  1. Beam focusing from double subwavelength metallic slits filled with nonlinear material surrounded by dielectric surface gratings vol.10, pp.4, 2012, https://doi.org/10.1016/j.photonics.2012.05.002
  2. Polarization dependent transmission through a sub-wavelength hexagonal aperture surrounded by segmented polygonal grooves vol.21, pp.26, 2013, https://doi.org/10.1364/OE.21.032668
  3. Beam focusing from double subwavelength slits surrounded by Ag/SiO 2 /Ag tri-layer gratings vol.381, 2016, https://doi.org/10.1016/j.optcom.2016.06.062
  4. Complex Mechanism of Enhanced Optical Transmission Through a Composite Coaxial/Circular Aperture vol.7, pp.3, 2012, https://doi.org/10.1007/s11468-011-9323-3