DOI QR코드

DOI QR Code

Terahertz Pulse Imaging of Micro-metastatic Lymph Nodes in Early-stage Cervical Cancer Patients

  • Jung, Eun-A (Department of Electrical and Computer Engineering, POSTECH) ;
  • Lim, Mee-Hyun (Department of Electrical and Computer Engineering, POSTECH) ;
  • Moon, Ki-Won (Department of Electrical and Computer Engineering, POSTECH) ;
  • Do, Young-Woong (Department of Electrical and Computer Engineering, POSTECH) ;
  • Lee, Soon-Sung (Department of Electrical and Computer Engineering, POSTECH) ;
  • Han, Hae-Wook (Department of Electrical and Computer Engineering, POSTECH) ;
  • Choi, Hyuck-Jae (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan Collage of Medicine) ;
  • Cho, Kyoung-Sik (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan Collage of Medicine) ;
  • Kim, Kyu-Rae (Department of Pathology, Asan Medical Center, University of Ulsan Collage of Medicine)
  • Received : 2011.03.02
  • Accepted : 2011.03.18
  • Published : 2011.06.25

Abstract

Lymph node metastasis is an important prognostic factor in cervical cancer patients. We report THz imaging for detecting micro-metastatic foci in the lymph nodes of early-stage uterine cervical cancer patients. Five paraffin-embedded metastatic lymph nodes from two cervical cancer patients were imaged using a THz time-domain spectroscopy system in the reflection mode. The size and shape of the tumor regions were compared with those from histopathologic examinations. The metastatic portions of lymph nodes as small as 3 mm were well delineated by THz imaging. The reflected peak amplitudes were lower in metastatic portions than in the normal portions of lymph nodes, and the difference in their peak-to-peak amplitudes was ~5%.

Keywords

References

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, "Estimating the world cancer burden: Globocan 2000," Int. J. Cancer 94, 153-156 (2001). https://doi.org/10.1002/ijc.1440
  2. M. M. Juretzka, K. C. Jensen, T. A. Longacre, N. N. Teng, and A. Husain, "Detection of pelvic lymph node micrometastasis in stage IA2-IB2 cervical cancer by immunohistochemical analysis," Gynecol. Oncol. 93, 107-111 (2004). https://doi.org/10.1016/j.ygyno.2003.11.033
  3. P. Marchiole, A. Buenerd, M. Benchaib, K. Nezhat, D. Dargent, and P. Mathevet, "Clinical significance of lympho vascular space involvement and lymph node micrometastases in early-stage cervical cancer: a retrospective case-control surgico-pathological study," Gynecol. Oncol. 97, 727-732 (2005). https://doi.org/10.1016/j.ygyno.2005.01.004
  4. N. Takeshima, K. Yanoh, T. Tabata, K. Nagai, Y. Hirai, and K. Hasumi, "Assessment of the revised international federation of gynecology and obstetrics staging for early invasive squamous cervical cancer," Gynecol. Oncol. 74, 165-169 (1999). https://doi.org/10.1006/gyno.1999.5473
  5. Y. Tanaka, S. Sawada, and T. Murata, "Relationship between lymph node metastases and prognosis in patients irradiated postoperatively for carcinoma of the uterine cervix," Acta Radiol. Oncol. 23, 455-459 (1984). https://doi.org/10.3109/02841868409136048
  6. H. J. Choi, J. W. Roh, S. S. Seo, S. Lee, J. Y. Kim, S. K. Kim, K. W. Kang, J. S. Lee, J. Y. Jeong, and S. Y. Park, "Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study," Cancer 106, 914-922 (2006). https://doi.org/10.1002/cncr.21641
  7. A. D. Williams, C. Cousins, W. P. Soutter, M. Mubashar, A. M. Peters, R. Dina, F. Fuchsel, G. A. McIndoe, and N. M. deSouza, "Detection of pelvic lymph node metastases in gynecologic malignancy: a comparison of CT, MR imaging, and positron emission tomography," AJR Am. J. Roentgenol. 177, 343-348 (2001). https://doi.org/10.2214/ajr.177.2.1770343
  8. H. H. Chou, T. C. Chang, T. C. Yen, K. K. Ng, S. Hsueh, S. Y. Ma, C. J. Chang, H. J. Huang, A. Chao, T. I. Wu, S. M. Jung, Y. C. Wu, C. T. Lin, K. G. Huang, and C. H. Lai, "Low value of [18F]-fluoro-2-deoxy-D-glucose positron emission tomography in primary staging of early-stage cervical cancer before radical hysterectomy," J. Clin. Oncol. 24, 123-128 (2006). https://doi.org/10.1200/JCO.2005.03.5964
  9. J. R. van Nagell Jr., J. W. Roddick Jr., and D. M. Lowin, "The staging of cervical cancer: inevitable discrepancies between clinical staging and pathologic findinges," Am. J. Obstet. Gynecol. 110, 973-978 (1971).
  10. J. Scheidler, H. Hricak, K. K. Yu, L. Subak, and M. R. Segal, "Radiological evaluation of lymph node metastases in patients with cervical cancer. A meta-analysis," JAMA 278, 1096-1101 (1997). https://doi.org/10.1001/jama.278.13.1096
  11. P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, "Terahertz pulsed spectroscopy of freshly excised human breast cancer," Opt Express 17, 12444-12454 (2009). https://doi.org/10.1364/OE.17.012444
  12. A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, "Terahertz pulsed imaging of human breast tumors," Radiology 239, 533-540 (2006). https://doi.org/10.1148/radiol.2392041315
  13. V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, "Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo," Br. J. Dermatol. 151, 424-432 (2004). https://doi.org/10.1111/j.1365-2133.2004.06129.x
  14. T. Enatsu, H. Kitahara, K. Takano, and T. Nagashima, "Terahertz spectroscopic imaging of paraffin-embedded liver cancer samples," in Proc. Conference on Infrared, Millimeter and Terahertz Electronics (Cardiff, UK, Sept. 2007), pp. 557-558.
  15. A. D. King, G. M. Tse, A. T. Ahuja, E. H. Yuen, A. C. Vlantis, E. W. To, and A. C. van Hasselt, "Necrosis in metastatic neck nodes: diagnostic accuracy of CT, MR imaging, and US," Radiology 230, 720-726 (2004). https://doi.org/10.1148/radiol.2303030157
  16. M. W. van den Brekel, H. V. Stel, J. A. Castelijns, J. J. Nauta, I. van der Waal, J. Valk, C. J. Meyer, and G. B. Snow, "Cervical lymph node metastasis: assessment of radiologic criteria," Radiology 177, 379-384 (1990). https://doi.org/10.1148/radiology.177.2.2217772
  17. M. G. Mack, J. Rieger, M. Baghi, S. Bisdas, and T. J. Vogl, "Cervical lymph nodes," Eur. J. Radiol. 66, 493-500 (2008). https://doi.org/10.1016/j.ejrad.2008.01.019
  18. H. J. Choi, S. H. Kim, S. S. Seo, S. Kang, S. Lee, J. Y. Kim, Y. H. Kim, J. S. Lee, H. H. Chung, J. H. Lee, and S. Y. Park, "MRI for pretreatment lymph node staging in uterine cervical cancer," AJR Am. J. Roentgenol. 187, W538-543 (2006). https://doi.org/10.2214/AJR.05.0263
  19. H. J. Choi, W. Ju, S. K. Myung, and Y. Kim, "Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis," Cancer Sci. 101, 1471-1479 (2010). https://doi.org/10.1111/j.1349-7006.2010.01532.x
  20. H. Hricak, C. Gatsonis, D. S. Chi, M. A. Amendola, K. Brandt, L. H. Schwartz, S. Koelliker, E. S. Siegelman, J. J. Brown, R. B. McGhee, Jr., R. Iyer, K. M. Vitellas, B. Snyder, H. J. Long 3rd, J. V. Fiorica, and D. G. Mitchell, "Role of imaging in pretreatment evaluation of early invasive cervical cancer: results of the intergroup study American college of radiology imaging network 6651-gynecologic oncology group 183," J. Clin. Oncol. 23, 9329-9337 (2005). https://doi.org/10.1200/JCO.2005.02.0354
  21. M. Bruehlmeier, U. Roelcke, P. Blauenstein, J. Missimer, P. A. Schubiger, J. T. Locher, R. Pellikka, and S. M. Ametamey, "Measurement of the extracellular space in brain tumors using 76Br-bromide and PET," J. Nucl. Med. 44, 1210-1218 (2003).
  22. J. H. Chen, H. E. Avram, L. E. Crooks, M. Arakawa, L. Kaufman, and A. C. Brito, "In vivo relaxation times and hydrogen density at 0.063-4.85 T in rats with implanted mammary adenocarcinomas," Radiology 184, 427-434 (1992). https://doi.org/10.1148/radiology.184.2.1620841
  23. K. F. Ross and R. E. Gordon, "Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance," J. Microsc. 128, 7-21 (1982). https://doi.org/10.1111/j.1365-2818.1982.tb00433.x
  24. P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, M. Hofmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, "Medical THz imaging: an investigation of histo-pathological samples," Phys. Med. Biol. 47, 3875-3884 (2002). https://doi.org/10.1088/0031-9155/47/21/327
  25. T. Loffler, K. Siebert, S. Czasch, T. Bauer, and H. G. Roskos, "Visualization and classification in biomedical terahertz pulsed imaging," Phys. Med. Biol. 47, 3847-3852 (2002). https://doi.org/10.1088/0031-9155/47/21/324
  26. E. Berry, J. W. Handley, A. J. Fitzgerald, W. J. Merchant, R. D. Boyle, N. N. Zinov'ev, R. E. Miles, J. M. Chamberlain, and M. A. Smith, "Multispectral classification techniques for terahertz pulsed imaging: an example in histopathology," Med. Eng. Phys. 26, 423-430 (2004). https://doi.org/10.1016/j.medengphy.2004.02.011

Cited by

  1. THz Time-Domain Spectroscopic Imaging of Human Articular Cartilage vol.33, pp.6, 2012, https://doi.org/10.1007/s10762-012-9903-0
  2. Investigation on terahertz parametric oscillators using GaP crystal with a noncollinear phase-matching scheme vol.62, pp.4, 2015, https://doi.org/10.1080/09500340.2014.976599
  3. Diffraction-Limited High-Power Single-Cycle Terahertz Pulse Generation in Prism-Cut LiNbO3for Precise Terahertz Applications vol.18, pp.1, 2014, https://doi.org/10.3807/JOSK.2014.18.1.060
  4. In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents vol.44, pp.7, 2014, https://doi.org/10.1070/QE2014v044n07ABEH015493
  5. Investigation on terahertz parametric oscillators using quasi-phase-matching GaP crystal vol.29, pp.01, 2015, https://doi.org/10.1142/S0217984914502583
  6. Quantitative analysis of water distribution in human articular cartilage using terahertz time-domain spectroscopy vol.3, pp.5, 2012, https://doi.org/10.1364/BOE.3.001110
  7. Compound Explosives Detection and Component Analysis via Terahertz Time-Domain Spectroscopy vol.17, pp.5, 2013, https://doi.org/10.3807/JOSK.2013.17.5.454
  8. Terahertz time-domain spectroscopy combined with fuzzy rule-building expert system and fuzzy optimal associative memory applied to diagnosis of cervical carcinoma vol.32, pp.1, 2015, https://doi.org/10.1007/s12032-014-0383-z
  9. Terahertz imaging of metastatic lymph nodes using spectroscopic integration technique vol.8, pp.2, 2017, https://doi.org/10.1364/BOE.8.001122
  10. Terahertz spectroscopic investigation of human gastric normal and tumor tissues vol.59, pp.18, 2014, https://doi.org/10.1088/0031-9155/59/18/5423
  11. Beyond conventional pathology: Towards preoperative and intraoperative lymph node staging vol.136, pp.4, 2015, https://doi.org/10.1002/ijc.28742
  12. The growth of biomedical terahertz research vol.47, pp.37, 2014, https://doi.org/10.1088/0022-3727/47/37/374009
  13. Composite multiscale entropy analysis of reflective terahertz signals for biological tissues vol.25, pp.20, 2017, https://doi.org/10.1364/OE.25.023669
  14. Frequency Tuning Characteristics of a THz-wave Parametric Oscillator vol.17, pp.1, 2013, https://doi.org/10.3807/JOSK.2013.17.1.097
  15. Terahertz Imaging System for Medical Applications and Related High Efficiency Terahertz Devices vol.35, pp.1, 2014, https://doi.org/10.1007/s10762-013-0004-5
  16. Use of Finite Difference Time Domain Simulations and Debye Theory for Modelling the Terahertz Reflection Response of Normal and Tumour Breast Tissue vol.9, pp.7, 2014, https://doi.org/10.1371/journal.pone.0099291
  17. Detection of formaldehyde oxidation catalysis by MCR-ALS analysis of multiset ToF-SIMS data in positive and negative modes vol.171, 2017, https://doi.org/10.1016/j.chemolab.2017.10.013
  18. Terahertz time-domain spectroscopy combined with support vector machines and partial least squares-discriminant analysis applied for the diagnosis of cervical carcinoma vol.7, pp.6, 2015, https://doi.org/10.1039/C4AY02665A
  19. THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents vol.22, pp.3, 2014, https://doi.org/10.3103/S1541308X14030029
  20. A System for THz Imaging of Low-Contrast Targets Using the Born Approximation vol.2, pp.3, 2012, https://doi.org/10.1109/TTHZ.2012.2189900
  21. Biomedical Applications of Terahertz Spectroscopy and Imaging vol.34, pp.10, 2016, https://doi.org/10.1016/j.tibtech.2016.04.008
  22. Terahertz irradiation-induced motility enhancement and intracellular calcium elevation in human sperm in vitro vol.9, pp.9, 2018, https://doi.org/10.1364/BOE.9.003998