이산적 입지 공간의 경쟁적 입지 문제를 해결하기 위한 GIS 기반 기하학적 방법론 연구

A GIS-based Geometric Method for Solving the Competitive Location Problem in Discrete Space

  • 이건학 (전남대학교 사범대학 지리교육과)
  • Lee, Gun-Hak (Department of Geography Education, Chonnam National University)
  • 투고 : 2011.05.12
  • 심사 : 2011.06.29
  • 발행 : 2011.06.30

초록

일반적으로 이산적 입지 공간에서 경쟁적 입지 문제는 입지 후보지에 따라 수많은 조합의 경우가 발생하는 의사결정 문제이기 때문에, 수리적으로 계산하기가 쉽지 않다. 따라서 본 연구에서는 결정적 배분 형태를 가정한 이산적 입지 공간의 경쟁적 입지 문제를 보다 효율적으로 해결하기 위한 대안적 방법에 대해 논의한다. 제안된 방법론의 핵심은 입지 문제의 크기와 관련되는 잠재적 입지후보지의 개수를 기하학적 개념을 이용하여 줄이는 것이다. 사례 분석으로 경쟁이 가열화되고 있는 초고속 인터넷 시장을 대상으로 제안된 방법론을 적용하였는데 두 가지 다른 크기의 문제, 즉 연구 지역 전체에 대해 정의된 잠재적 입지 후보지와 GIS 기반의 기하학적 알고리즘에 의해 추출된 보다 적은 수의 잠재적 입지 후보지에 대해 계산 결과와 공간적 배열을 비교하였다. 사례 분석 결과, 두 문제 모두 고객 유치를 최대화시키는 동일한 최적 입지를 보여주는 한편, 적은 수의 잠재적 입지 후보지를 가진 경쟁적 입지 모델이 보다 효율적으로 해결될 수 있었다.

A competitive location problem in discrete space is computationally difficult to solve in general because of its combinatorial feature. In this paper, we address an alternative method for solving competitive location problems in discrete space, particularly employing deterministic allocation. The key point of the suggested method is to reducing the number of predefined potential facility sites associated with the size of problem by utilizing geometric concepts. The suggested method was applied to the existing broadband marketplace with increasing competition as an application. Specifically, we compared computational results and spatial configurations of two different sized problems: the problem with the original potential sites over the study area and the problem with the reduced potential sites extracted by a GIS-based geometric algorithm. The results show that the competitive location model with the reduced potential sites can be solved more efficiently, while both problems presented the same optimal locations maximizing customer capture.

키워드

참고문헌

  1. Achabal, D. D., Gorr, G. L., and Mahajan, V., 1982, MULTILOC: A multiple store location model, Journal of Retailing, 58(2), 5-25.
  2. Aurenhammer, F. and Edelsbrunner., H., 1984, An optimal algorithm for constructing the weighted Voronoi diagram in the plane, Pattern Recognition, 17(2), 251-257. https://doi.org/10.1016/0031-3203(84)90064-5
  3. Boots, B. and South, R., 1997, Modeling retail trade areas using higher-order, multiplicatively weighte Voronoi diagrams, Journal of Retailing, 73(4), 519-536. https://doi.org/10.1016/S0022-4359(97)90033-6
  4. Church, R. L., 1984, The planar maximal covering location problem, Journal of Regional Science, 24(2), 185-201. https://doi.org/10.1111/j.1467-9787.1984.tb01031.x
  5. Church, R. L., 2002, Geographical information systems and location science, Computers and Operations Research, 29, 541-562. https://doi.org/10.1016/S0305-0548(99)00104-5
  6. Church, R. L. and ReVelle, C. S., 1974, The maximal covering location problem, Papers of the Regional Science Association, 32, 101-118. https://doi.org/10.1007/BF01942293
  7. Current, J., Hokey, M., and Schilling, D., 1990, Multiobjective analysis of facility location decisions, European Journal of Operational Research, 49, 295-307. https://doi.org/10.1016/0377-2217(90)90401-V
  8. Drezner, T., 1994, Locating a single new facility among existing, unequally attractive facilities, Journal of Regional Science, 34(2), 237-252. https://doi.org/10.1111/j.1467-9787.1994.tb00865.x
  9. Drezner, T., 1995, Competitive facility location in the plane, in Drezner, Z.(ed.), Facility location: A survey of applications and methods, Springer, Berlin, 285-300.
  10. Drezner, T. and Z. Drezner. 2006, Multiple facilities location in the plane using the gravity model, Geographical Analysis, 38, 391-406. https://doi.org/10.1111/j.1538-4632.2006.00692.x
  11. Drezner, T., Drezner, Z., and Salhi, S., 2002, Solving the multiple competitive facilities location problem, European Journal of Operational Research, 142, 138-151. https://doi.org/10.1016/S0377-2217(01)00168-0
  12. Eiselt, H. A. and Laporte, G., 1989, The maximum capture problem in a weighted network, Journal of Regional Science, 29(3), 433-439. https://doi.org/10.1111/j.1467-9787.1989.tb01388.x
  13. Ghosh, A. and Craig, C. S., 1986, An approach to determining optimal locations for new services, Journal of Marketing Research, 23, 354-362. https://doi.org/10.2307/3151811
  14. Goodchild, M. F., 1984, ILACS: A location-allocation model for retail site selection, Journal of Retailing, 60, 84-100.
  15. Grubesic, T. H., 2008, Spatial data constraints: Implications for measuring broadband, Telecommunication Policy, 32(7), 490-502. https://doi.org/10.1016/j.telpol.2008.05.002
  16. Grubesic, T. H. and Murray, A. T., 2002, Constructing the divide: spatial disparities in broadband access, Papers in Regional Science, 81, 197-221. https://doi.org/10.1007/s101100100096
  17. Hakimi, S. L., 1964, Optimal location of switching centers and the absolute centers and medians of a graph, Operations Research, 12, 450-459. https://doi.org/10.1287/opre.12.3.450
  18. Hakimi, S. L. 1983, On locating new facilities in a competitive environment, European Journal of Operational Research, 12, 29-35. https://doi.org/10.1016/0377-2217(83)90180-7
  19. Hotelling, H., 1929, Stability in competition, Economic Journal, 39, 41-57. https://doi.org/10.2307/2224214
  20. Huff, D. L., 1964, Defining and estimating a trading area, Journal of Marketing, 28, 24-38.
  21. Lakshmanan, T. R. and Hansen, W. G., 1965, A retail market potential model, Journal of American Institute of Planners, 31, 134-143. https://doi.org/10.1080/01944366508978155
  22. Lee, G. and O'Kelly, M. E., 2009, Exploring spatial equilibria in a competitive broadband access market: Theoretical modeling approach, Journal of Regional Science, 49(5), 953-975. https://doi.org/10.1111/j.1467-9787.2009.00609.x
  23. Mu, L., 2004, Polygon characterization with the multiplicatively weighted Voronoi diagram, The Professional Geographer, 56(2), 223-239.
  24. Murray, A. T. and Tong, D., 2007, Coverage optimization in continuous space facility siting, International Journal of Geographical Information Science, 21(7), 757-776. https://doi.org/10.1080/13658810601169857
  25. Nakanishi, M. and Cooper, L. G., 1974, Parameter estimation for a multiplicative competitive interaction model: Least squares approach, Journal of Marketing Research, 11(3), 303-311. https://doi.org/10.2307/3151146
  26. Newton, H., 2005, Newton's telecom dictionary, CMP Books, San Francisco.
  27. O'Kelly, M. E. and Miller, H. J., 1989, A synthesis of some market area delimitation models, Growth and Change, 20, 14-33. https://doi.org/10.1111/j.1468-2257.1989.tb00493.x
  28. O'Kelly, M. E., 1987, Spatial-interaction-based locationallocation models, in Ghosh, A. and Rushton, G.(eds.), Spatial analysis and location-allocation models, Van Nostrand Reinhold Company, New York, 302-326.
  29. Okabe, A. and Suzuki, A., 1997, Locational optimization problems solved through Voronoi diagrams, European Journal of Operational Research, 98, 445-456. https://doi.org/10.1016/S0377-2217(97)80001-X
  30. Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N., 2000, Spatial tessellations: Concepts and applications of Voronoi diagrams, John Wiley and Sons, New York.
  31. Plastria, F., 2001, Static competitive facility location: an overview of optimisation approaches, European Journal of Operational Research, 129, 461-470. https://doi.org/10.1016/S0377-2217(00)00169-7
  32. Plastria, F. and Carrizosa, E., 2004, Optimal location and design of a competitive facility, Mathematical Programming, 100(2), 247-265. https://doi.org/10.1007/s10107-003-0468-5
  33. Reilly, W. J., 1931, The law of retail gravitation, Knickerbocker Press, New York.
  34. ReVelle, C. S. and Serra, D., 1991, The maximum capture problem including relocation, Information and Operations Research, 29, 130-138. https://doi.org/10.1080/03155986.1991.11732161
  35. ReVelle, C. S., 1986, The maximum capture or sphere of influence problem: Hotelling revisited on a network, Journal of Regional Science, 26, 343-357. https://doi.org/10.1111/j.1467-9787.1986.tb00824.x
  36. ReVelle, C. S. and Eiselt, H. A., 2005, Location analysis: A synthesis and survey, European Journal of Operational Research, 165, 1-19. https://doi.org/10.1016/j.ejor.2003.11.032
  37. Zhang, L. and Rushton, G., 2008, Optimizing the size and locations of facilities in competitive multisite service systems, Computers and Operations Research, 35, 327-338. https://doi.org/10.1016/j.cor.2006.03.002