DOI QR코드

DOI QR Code

Cancer stem cell theory and update in oral squamous cell carcinoma

구강 편평세포암종에서의 암줄기세포 이론과 최신 지견

  • Kim, Deok-Hun (Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Seoul National University) ;
  • Yun, Jun-Yong (Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Seoul National University) ;
  • Lee, Ju-Hyun (Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Seoul National University) ;
  • Kim, Soung-Min (Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Seoul National University) ;
  • Myoung, Hoon (Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Seoul National University)
  • 김덕훈 (서울대학교 치의학대학원 치의학과 구강악안면외과학교실) ;
  • 윤준용 (서울대학교 치의학대학원 치의학과 구강악안면외과학교실) ;
  • 이주현 (서울대학교 치의학대학원 치의학과 구강악안면외과학교실) ;
  • 김성민 (서울대학교 치의학대학원 치의학과 구강악안면외과학교실) ;
  • 명훈 (서울대학교 치의학대학원 치의학과 구강악안면외과학교실)
  • Received : 2010.12.10
  • Accepted : 2011.04.13
  • Published : 2011.04.29

Abstract

Cancer stem cells have stem cell-like features, such as the ability for self-renewal and differentiation but show unlimited growth because they have the lost normal regulation of cell growth. Cancer stem cells and normal stem cells have similar features. They show high motility, diversity of progeny, robust proliferative potential, association with blood vessels, immature expression profiles, nestin expression, epidermal growth factor (EGF)-receptor expression, phosphatase and tensin homolog (PTEN) expression, hedgehog pathway activity, telomerase activity, and Wnt pathway activity. On the other hand, with cancer cells, some of these signaling pathways are abnormally modified. In 1875, Cohnheim suggested the concept of cancer stem cells. Recently, evidence for the existence of cancer stem cells was identified. In 1994, the cancer stem cells' specific cell surface marker for leukemia was identified. Since then, other specific cell surface markers for cancer stem cells in solid tumors (e.g. breast and colon cancer) have been identified. In oral cancer, studies on cancer stem cells have been performed mainly with squamous cell carcinomas. Oral cancer specific cell surface markers, which are genes strongly expressed in oral cancer and cancer stem cell specific side populations, have been identified. Cancer stem cells are resistant to radiotherapy and chemotherapy. Therefore, to eliminate malignant tumors efficiently and reduce the recurrence rate, therapy targeting cancer stem cells needs to be performed. Currently, studies targeting the cancer stem cells' specific signaling pathways, telomerase and tumor vasculatures are being done.

Keywords

References

  1. Bray I, Brennan P, Boffetta P. Projections of alcohol- and tobacco- related cancer mortality in Central Europe Int J Cancer 2000; 87:122-8. https://doi.org/10.1002/1097-0215(20000701)87:1<122::AID-IJC18>3.0.CO;2-W
  2. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004;118:149-61. https://doi.org/10.1016/j.cell.2004.07.004
  3. Sipkins DA, Wei X, Wu JW, Runnels JM, Côté D, Means TK, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005;435:969-73. https://doi.org/10.1038/nature03703
  4. Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol 2006;7:333-7. https://doi.org/10.1038/ni1331
  5. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 2000;6:1278-81. https://doi.org/10.1038/81390
  6. Henrique D, Hirsinger E, Adam J, Le Roux I, Pourquie O, Ish- Horowicz D, et al. Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr Biol 1997;7:661-70. https://doi.org/10.1016/S0960-9822(06)00293-4
  7. Austin J, Kimble J. Glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 1987;51:589-99. https://doi.org/10.1016/0092-8674(87)90128-0
  8. Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001;2:172-80. https://doi.org/10.1038/84282
  9. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 1999; 22:103-14. https://doi.org/10.1016/S0896-6273(00)80682-0
  10. Zhang Y, Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 2001;410:599-604. https://doi.org/10.1038/35069099
  11. Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Annu Rev Neurosci 2001;24:385-428. https://doi.org/10.1146/annurev.neuro.24.1.385
  12. Gailani MR, Bale AE. Acquired and inherited basal cell carcinomas and the patched gene. Adv Dermatol 1999;14:261-83.
  13. Polakis P. Wnt signaling and cancer. Genes Dev 2000;14:1837-51.
  14. Chan EF, Gat U, McNiff JM, Fuchs E. A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet 1999;21:410-3. https://doi.org/10.1038/7747
  15. Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J Cell Sci 2005;118:3585-94. https://doi.org/10.1242/jcs.02532
  16. Miller SJ, Lavker RM, Sun TT. Interpreting epithelial cancer biology in the context of stem cells: tumor properties and therapeutic implications. Biochem Biophys Acta 2005;1756:25-52.
  17. Crowe DL, Parsa B, Sinha UK. Relationships between stem cells and cancer stem cells. Histol Histopathol 2004;19:505-9.
  18. Young HE, Duplaa C, Romero-Ramos M, Chesselet MF, Vourch P, Yost MJ, et al. Adult reserve stem cells and their potential for tissue engineering. Cell Biochim Biophys 2004;40:1-80. https://doi.org/10.1385/CBB:40:3:1
  19. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004;432:324-31. https://doi.org/10.1038/nature03100
  20. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell 2004;118:409-18. https://doi.org/10.1016/j.cell.2004.08.005
  21. Tsai RY. A molecular view of stem cell and cancer cell self-renewal. Int J Biochem Cell Biol 2004 36:684-94. https://doi.org/10.1016/j.biocel.2003.10.016
  22. Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N Engl J Med 2005;353:811-22. https://doi.org/10.1056/NEJMra043666
  23. Chen CY, Chiou SH, Huang CY, Jan CI, Lin SC, Tsai ML, et al. Distinct population of highly malignant cells in a head and neck squamous cell carcinoma cell line established by xenograft model. J Biomed Sci 2009;16:100. https://doi.org/10.1186/1423-0127-16-100
  24. Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 2004;51:1-28. https://doi.org/10.1016/j.critrevonc.2004.04.007
  25. Southham CM, Brunschwig A. Quantitative studies of autotransplantation of human cancer. Cancer 1961;14:971-8 https://doi.org/10.1002/1097-0142(196109/10)14:5<971::AID-CNCR2820140510>3.0.CO;2-O
  26. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730-7. https://doi.org/10.1038/nm0797-730
  27. Reya T. Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105-11. https://doi.org/10.1038/35102167
  28. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene 2004;23:7274-82. https://doi.org/10.1038/sj.onc.1207947
  29. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human coloncancer- initiating cells. Nature 2007;445:111-5 https://doi.org/10.1038/nature05384
  30. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y, et al. Characterization of clonogenic multiple myeloma cells. Blood 2004;103:2332-6 https://doi.org/10.1182/blood-2003-09-3064
  31. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996;183:1797-806. https://doi.org/10.1084/jem.183.4.1797
  32. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997;3:1337-45. https://doi.org/10.1038/nm1297-1337
  33. Hirshcmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004;101:14228-33. https://doi.org/10.1073/pnas.0400067101
  34. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 2004;101:781-6. https://doi.org/10.1073/pnas.0307618100
  35. Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007;67:4827-33. https://doi.org/10.1158/0008-5472.CAN-06-3557
  36. Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line, Cancer Res 2007;67:3716-24. https://doi.org/10.1158/0008-5472.CAN-06-4343
  37. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, et al. Ovarian cancer side population defines cells with stem cell like characteristics and mullerian inhibiting substance responsiveness, Proc Natl Acad Sci USA 2006;103:11154-9. https://doi.org/10.1073/pnas.0603672103
  38. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea-a paradigm shift. Cancer Res 2006;66:1883-90. https://doi.org/10.1158/0008-5472.CAN-05-3153
  39. Polyak K, Hahn WC. Roots and stems: stem cells in cancer. Nat Med 2006;12:296-300. https://doi.org/10.1038/nm1379
  40. Vescovi AL, Galli R, Reynolds BA. Brain tumor stem cells. Nat Rev Cancer 2006;6:425-36. https://doi.org/10.1038/nrc1889
  41. Caussinus E, Gonzalez C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 2005;37:1125-9. https://doi.org/10.1038/ng1632
  42. Lininger RA, Fujii H, Man YG, Gabrielson E, Tavassoli FA. Comparison of loss heterozygosity in primary and recurrent ductal carcinoma in situ of the breast. Mod Pathol 1998;11:1151-9.
  43. Passegue E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003;100 Suppl. 1:11842-9. https://doi.org/10.1073/pnas.2034201100
  44. Prindull G. Hypothesis: cell plasticity, linking embryonal stem cells to adult stem cell reservoirs and metastatic cancer cells? Exp Hematol 2005;33:738-46. https://doi.org/10.1016/j.exphem.2005.03.002
  45. Kai T, Spradling A. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 2004;428:564-9. https://doi.org/10.1038/nature02436
  46. Janes SM, Watt FM. New roles for integrins in squamouscell carcinoma. Nat Rev Cancer 2006;6:175-83. https://doi.org/10.1038/nrc1817
  47. Boyle JO, Hakim J, Koch W, van der Riet P, Hruban RH, Roa RA, et al. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res 1993;53:4477-80.
  48. Wallace-Brodeur RR, Lowe SW. Clinical implications of p53 mutations. Cell Mol Life Sci 1999;55:64-75. https://doi.org/10.1007/s000180050270
  49. Chen Q, Samaranayake LP, Zhen X, Luo G, Nie M, Li B. Upregulation of Fas ligand and down regulation of Fas expression in oral carcinogenesis. Oral Oncol 1999;35:548-53. https://doi.org/10.1016/S1368-8375(99)00029-9
  50. Gastman BR, Atarshi Y, Reichert TE, Saito T, Balkir L, Rabinowich H. Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes. Cancer Res 1999;59:5356-64.
  51. Imai Y, Sasaki T, Shinagawa Y, Akimoto K, Fujibayashi T. Expression of metastasis suppressor gene (KAI1/CD82) in oral squamous cell carcinoma and its clinico-pathological significance. Oral Oncol 2002;38:557-61. https://doi.org/10.1016/S1368-8375(01)00120-8
  52. Kropveld A, Rozemuller EH, Leppers FG, Scheidel KC, de Weger RA, Koole R, et al. Sequencing analysis of RNA and DNA of exons 1 through 11 shows p53 gene alterations to be present in almost 100% of head and neck squamous cell cancers. Lab Invest 1999;79:347-53.
  53. Levine AJ. The tumor suppressor genes. Annu Rev Biochem 1993;62:623-51. https://doi.org/10.1146/annurev.bi.62.070193.003203
  54. Moles JP, Watt FM. The epidermal stem cell compartment: variation in expression levels of E-cadherin and catenins within the basal layer of human epidermis. J Histochem Cytochem 1997; 45:867-74. https://doi.org/10.1177/002215549704500611
  55. Yokoyama K, Kamata N, Hayashi E, Hoteiya T, Ueda N, Fujimoto R, et al. Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol 2001;37:65-71. https://doi.org/10.1016/S1368-8375(00)00059-2
  56. Hombach-Klonisch S, Paranjothy T, Wiechec E, Pocar P, Mustafa T, Seifert A, et al. Cancer stem cells as targets for cancer therapy: selected cancers as examples. 2008;56:165-80. https://doi.org/10.1007/s00005-008-0023-4
  57. Lowell S, Jones P, Le Roux I, Dunne J, Watt FM. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol 2000;10:491-500. https://doi.org/10.1016/S0960-9822(00)00451-6
  58. Fuchs E. Epidermal differentiation: the bare essentials. J Cell Biol 1990;111:2807-14. https://doi.org/10.1083/jcb.111.6.2807
  59. Okuyama R, Nguyen BC, Talora C, Ogawa E, Tommasi di Vignano A, Lioumi M, et al. High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. Dev Cell 2004;6:551-62. https://doi.org/10.1016/S1534-5807(04)00098-X
  60. Okuyama R, Tagami H, Aiba S. Notch signaling: Its role in epidermal homeostasis and in the pathogenesis of skin diseases. J Dermatol Sci 2008;49:187-94. https://doi.org/10.1016/j.jdermsci.2007.05.017
  61. Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 2003; 33:416-21. https://doi.org/10.1038/ng1099
  62. Proweller A, Tu L, Lepore JJ, Cheng L, Lu MM, Seykora J, et al. Impaired notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res 2006;66:7438-44. https://doi.org/10.1158/0008-5472.CAN-06-0793
  63. Thelu J, Rossio P, Favier B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol 2002;2:7. https://doi.org/10.1186/1471-5945-2-7
  64. Okamoto A, Chikamatsu K, Sakakura K, Hatsushika K, Takahashi G, Masuyama K. Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncol 2009;45:633-9. https://doi.org/10.1016/j.oraloncology.2008.10.003
  65. Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 2008;14:4085-95. https://doi.org/10.1158/1078-0432.CCR-07-4404
  66. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007;104:973-8. https://doi.org/10.1073/pnas.0610117104
  67. Chen JS, Pardo FS, Wang-Rodrihuez J, Chu TS, Lopez JP, Aguilera J, et al. EGFR regulates the side population in head and neck squamous cell carcinoma. Laryngoscope 2006;116:401-6. https://doi.org/10.1097/01.mlg.0000195075.14093.fb
  68. Mackenzie IC. Growth of malignant oral epithelial stem cells after seeding into organotypical cultures of normal mucosa. J Oral Pathol Med 2004;33;71-8. https://doi.org/10.1111/j.1600-0714.2004.00157.x
  69. Locke M, Heywood M, Fawell S, Mackenzie IC. Retention of intrinsic stem cell hierarchies in carcinoma derived cell lines. Cancer Res 2005;65:8944-50. https://doi.org/10.1158/0008-5472.CAN-05-0931
  70. Costea DE, Tsinkalovsky O, Vintermyr OK, Johannessen AC, Mackenzie IC. Cancer stem cells-new and potentially important targets for the therapy of oral squamous cell carcinoma. Oral Dis 2006;12:443-54. https://doi.org/10.1111/j.1601-0825.2006.01264.x
  71. Costea DE, Tsinkalovsky O, Vintermyr OK, Johannessen AC, Mackenzie IC. Cancer stem cells-new and potentially important targets for the therapy of oral squamous cell carcinoma. Erratum in; Oral Dis 2006;12:584. https://doi.org/10.1111/j.1601-0825.2006.01335.x
  72. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the sidepopulation phenotype. Nat. Med. 2001;7:1028-34. https://doi.org/10.1038/nm0901-1028
  73. Zhang Q, Shi S, Yen Y, Brown J, Ta JQ, Le AD. A subpopulation of $CD133^+$ cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett 2009;289:151-60.
  74. Jensen KB, Jones J, Watt FM. A stem cell gene expression profile of human squamous cell carcinomas. Cancer Lett 2008; 272:23-31. https://doi.org/10.1016/j.canlet.2008.06.014
  75. Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 1993;73:713-24. https://doi.org/10.1016/0092-8674(93)90251-K
  76. Tanemura A, Nagasawa T, Inui S, Itami S. LRIG-1 provides a novel prognostic predictor in squamous cell carcinoma of the skin: immunohistochemical analysis for 38 cases. Dermatol Surg 2005;31:423-30. https://doi.org/10.1097/00042728-200504000-00008
  77. Lindstrom AK, Ekman K, Stendahl U, Tot T, Henriksson R, Hedman H, et al. LRIG1 and squamous epithelial uterine cervical cancer: correlation to prognosis, other tumor markers, sex steroid hormones, and smoking. Int J Gynecol Cancer 2008;18:312-7. https://doi.org/10.1111/j.1525-1438.2007.01021.x
  78. Eisenmann KM, McCarthy JB, Simpson MA, Keely PJ, Guan JL, Tachibana K, et al. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nat Cell Biol 1999;1:507-13. https://doi.org/10.1038/70302
  79. Majumdar M, Vuori K, Stallcup WB. Engagement of the NG2 proteoglycan triggers cell spreading via rac and p130cas. Cell Signal 2003;15:79-84. https://doi.org/10.1016/S0898-6568(02)00045-1
  80. Andersen SS. Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol 2000;10:261-7. https://doi.org/10.1016/S0962-8924(00)01786-4
  81. Hayry V, Makinen LK, Atula T, Sariola H, Makitie A, Leivo I, et al. Bmi-1 expression predicts prognosis in squamous cell carcinoma of the tongue. Br J Cancer 2010;102:892-7. https://doi.org/10.1038/sj.bjc.6605544
  82. Keski-Santti H, Atula T, Hollmen J, Makitie A, Leivo I. Predictive value of histopathologic parameters in early squamous cell carcinoma of oral tonque. Oral Oncol 2007;43:1007-13. https://doi.org/10.1016/j.oraloncology.2006.11.015
  83. Spivakov M, Fisher AG. Epigenetic signatures of stem-cell identity. Nat Rev Genet 2007;8:263-71. https://doi.org/10.1038/nrg2046
  84. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R. BMI-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 2005;19:1432-7. https://doi.org/10.1101/gad.1299505
  85. Kang MK, Kim RH, Kim SJ, Yip FK, Shin KH, Dimri GP, et al. Elevated BMI-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival. Br J Cancer 2007;96:126-33. https://doi.org/10.1038/sj.bjc.6603529
  86. Vora HH, Shah NG, Trivedi TI, Goswami JV, Shukla SN, Shah PM. Expression of C-myc mRNA in squamous cell carcinoma of the tongue. J Surg Oncol 2007;95:70-8. https://doi.org/10.1002/jso.20675
  87. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2:84-9. https://doi.org/10.1038/35000034
  88. Zidar N, Gale N, Kojc N, Volavsek M, Cardesa A, Alos L, et al. Cadherin-catenin complex and transcription factor Snail-1 in spindle cell carcinoma of the head and neck. Virchows Arch 2008;453:267-74. https://doi.org/10.1007/s00428-008-0649-y
  89. Harper LJ, Piper K, Common J, Fortune F, Mackenzie IC. Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. Oral Pathol Med 2007;36:594-603. https://doi.org/10.1111/j.1600-0714.2007.00617.x
  90. Zhang P, Zhang Y, Mao L, Zhang Z, Chen W. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett 2009; 277:227-34. https://doi.org/10.1016/j.canlet.2008.12.015
  91. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2 cancer cells are similarly tumorigenic. Cancer Res 2005;65:6207-19. https://doi.org/10.1158/0008-5472.CAN-05-0592
  92. Burkert J, Otto WR, Wright NA. Side populations of gastrointestinal cancers are not enriched in stem cells. J Pathol 2008;214:564-73. https://doi.org/10.1002/path.2307
  93. Song LB, Zeng MS, Liao WT, Zhang L, Mo HY, Liu WL, et al. Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells. Cancer Res 2006;66:6225-32. https://doi.org/10.1158/0008-5472.CAN-06-0094
  94. Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 2005;26:495-502.
  95. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 2004;14:43-7. https://doi.org/10.1016/j.gde.2003.11.007
  96. Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 2005;23:7350-60. https://doi.org/10.1200/JCO.2005.03.3845
  97. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005;5:275-84. https://doi.org/10.1038/nrc1590
  98. Banerji S, Los M. Important differences between topoisomerase-I and -II targeting agents. Cancer Biol Ther 2006;5:965-6. https://doi.org/10.4161/cbt.5.8.3274
  99. Massard C, Deutsch E,Soria JC. Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 2006;17:1620-4. https://doi.org/10.1093/annonc/mdl074
  100. Zuse A, Prinz H, Mu¨ller K, Schmidt P, Gunther EG, Schweizer F, et al. 9-Benzylidene-naphtho[2,3-b]thiophen-4-ones and benzylidene- 9(10H)-anthracenones as novel tubulin interacting agents with high apoptosis-inducing activity. Eur J Pharmacol 2007; 575:34-45. https://doi.org/10.1016/j.ejphar.2007.07.050
  101. Tang C, Ang BT, Pervaiz S. Cancer stem cell: target for anti-cancer therapy. FASEB J 2007;21:3777-85. https://doi.org/10.1096/fj.07-8560rev
  102. Lou H, Dean M. Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 2007;26: 1357-60. https://doi.org/10.1038/sj.onc.1210200
  103. Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007;13:4042-5. https://doi.org/10.1158/1078-0432.CCR-06-2316
  104. Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, et al. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 2005;7:967-76. https://doi.org/10.1593/neo.05394
  105. Harley CB. Telomerase and cancer therapeutics. Nat Rev Cancer 2008;8:167-79. https://doi.org/10.1038/nrc2275
  106. Yang ZJ, Wechsler-Reya RJ. Hit'em where they live: targeting the cancer stem cell niche. Cancer Cell 2007;11:3-5. https://doi.org/10.1016/j.ccr.2006.12.007
  107. Booy EP, Johar D, Maddika S, Pirzada H, Sahib MM, Gehrke I, et al. Monoclonal and bispecific antibodies as novel therapeutics. Arch Immunol Ther Exp (Warsz) 2006;54:85-101. https://doi.org/10.1007/s00005-006-0011-5
  108. Johnston JB, Navaratnam S, Pitz MW, Maniate JM, Wiechec E, Baust H, et al. Targeting the EGFR pathway for cancer therapy. Curr Med Chem 2006;13:3483-92. https://doi.org/10.2174/092986706779026174
  109. Krzemieniecki K, Szpyt E, Rashedi I, Gawron K, Los M. Targeting of solid tumors and blood malignancies by antibodybased therapies. Centr Eur J Biol 2006;1:167-82. https://doi.org/10.2478/s11535-006-0014-6
  110. Rashedi I, Panigrahi S, Ezzati P, Ghavami S, Los M. Autoimmunity and apoptosis: therapeutic implications. Curr Med Chem 2007;14:3139-51. https://doi.org/10.2174/092986707782793952
  111. Peter Znamenskiy. A diagram illustrating the disctinction between cancer stem cell targeted (above) and conventional (below) cancer therapies [internet]. San Francisco, California: Wikimedia Commons;2009. Available from: http://en.wikipedia.org/wiki/File:Cancer_stem_cells_text_resized.svg.
  112. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004;431:707-12. https://doi.org/10.1038/nature02962
  113. Farnie G, Clarke RB. Mammary stem cells and breast cancer: role of Notch signalling. Stem Cell Rev 2007;3:169-75. https://doi.org/10.1007/s12015-007-0023-5
  114. Chen Z, Han ZC. STAT3: A critical transcription activator in angiogenesis. Med Res Rev 2008;28:185-200. https://doi.org/10.1002/med.20101
  115. Houghton J. Bone-marrow-derived cells and cancer: an opportunity for improved therapy. Nat Clin Pract Oncol 2007;4:2-3.
  116. Keith WN, Thomson CM, Howcroft J, Maitland NJ, Shay JW. Seeding drug discovery: integrating telomerase cancer biology and cellular senescence to uncover new therapeutic opportunities in targeting cance stem cells. Drug Discov Today 2007;12:611-21. https://doi.org/10.1016/j.drudis.2007.06.009
  117. Hashemi M, Ghavami S, Eshraghi M, Booy EP, Los M. Cytotoxic effects of intra and extracellular zinc chelation on human breast cancer cells. Eur J Pharmacol 2007;557:9-19. https://doi.org/10.1016/j.ejphar.2006.11.010
  118. Burek M, Maddika S, Burek CJ, Daniel PT, Schulze-Osthoff K, Los M. Apoptin-induced cell death is modulated by Bcl-2 family members and is Apaf-1 dependent. Oncogene 2006;25:2213-22. https://doi.org/10.1038/sj.onc.1209258
  119. Maddika S, Mendoza FJ, Hauff K, Zamzow CR, Paranjothy T, Los M. Cancer-selective therapy of the future: apoptin and its mechanism of action. Cancer Biol Ther 2006;5:10-9. https://doi.org/10.4161/cbt.5.1.2400
  120. Ghavami S, Asoodeh A, Klonisch T, Halayko AJ, Kadkhoda K, Kroczak TJ, et al. Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J Cell Mol Med 2008;12:1005-22. https://doi.org/10.1111/j.1582-4934.2008.00129.x
  121. Ghavami S, Kerkhoff C, Chazin WJ, Kadkhoda K, Xiao W, Zuse A, et al. S100A8/9 induces cell death via a novel, RAGE-independent pathway that involves selective release of Smac/DIABLO and Omi/HtrA2. Biochim Biophys Acta 2008;1783:297-311. https://doi.org/10.1016/j.bbamcr.2007.10.015
  122. Grote J, Konig S, Ackermann D, Sopalla C, Benedyk M, Los M, et al. Identification of poly(ADP-ribose) polymerase-1 and Ku70/Ku80 as transcriptional regulators of S100A9 gene expression. BMC Mol Biol 2006;7:48. https://doi.org/10.1186/1471-2199-7-48
  123. Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 2004;167:215-21. https://doi.org/10.1083/jcb.200406140
  124. Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 2002;8:979-86. https://doi.org/10.1038/nm754
  125. Alexander HK, Booy EP, Xiao W, Ezzati P, Baust H, Los M. Selected technologies to control genes and their products for experimental and clinical purposes. Arch Immunol Ther Exp (Warsz) 2007; 55:139-49. https://doi.org/10.1007/s00005-007-0025-7
  126. Ju KM, Jin JY, Kim HK, Nam DH. Research direction and prospect of brain cancer stem cell. Mocule-cell biology News 2008;20:12-8.