DOI QR코드

DOI QR Code

Evaluation of Hydroxyl radical Formation and Energy Distribution in Photolysis Reactor

광반응 반응기 내부의 에너지 분포와 라디칼 생성에 대한 연구

  • 남상건 (고려대학교 건축사회환경공학부) ;
  • 황안나 (고려대학교 건축사회환경공학부) ;
  • 조상현 (고려대학교 건축사회환경공학부) ;
  • 임명희 (고려대학교 건축사회환경공학부 BK21 건설사업 글로벌 리더 양성 사업단) ;
  • 김지형 (고려대학교 건축사회환경공학부)
  • Received : 2010.11.12
  • Accepted : 2011.01.31
  • Published : 2011.04.30

Abstract

In this study, photochemical effects (OH radical formation) in the photoreactor was investigated to analyze UV-C intensity distribution. In addition, The influence radius of the UV-C lamp was measured at various dose of $TiO_2$ (Degussa P-25). The photoreactor used in this study was bath type reactor which is made by acrylic and the UV-C lamp (SANKYO DENKI, wavelength : 254 nm, Diameter : 2.2 cm, Length : 18.5 cm) was used as photo source. The maximum electric power consumption of the UV lamp was 10.5 W. The OH radical formation by UV-C was measured by KI dosimetry methods. From the results, the effective OH radical formation was occurred under the following condition. The reasonable distance of UV-C lamp is within 13 cm and the intensity of UV-C lamp should be more than 0.367 mW/$cm^2$. Moreover, the concentration of catalyst affects on the influence radius of the UV lamp.

본 연구에서는 광 반응기 내부의 영향반경을 평가하기 위해 자외선(UV-C) 램프의 강도와 photochemical에 의한 OH 라디칼 생성량을 측정하였다. 또한 $TiO_2$ (Degussa P-25)를 농도별로 첨가하여 자외선 램프의 영향반경을 측정하였다. 광 반응기는 아크릴 재질의 bath 타입을 사용하였고, 254 nm의 파장을 가진 UV-C 자외선 램프를(SANKYO DENKI, 지름 : 2.2 cm, 길이 : 18.5 cm) 사용하였다. 램프의 소비전력은 10.5 W이고, OH 라디칼 생성량을 측정하기 위해 KI dosimetry를 사용하였다. 실험 결과로부터 광 반응기에서 자외선의 강도가 0.367 mW/$cm^2$이상 조사되어야하고, 거리는 13 cm 이내에서 OH 라디칼 생성에 영향을 미치는 것으로 나타났다. 또한 광촉매 반응기에서는 촉매의 농도로 인해 자외선의 영향반경이 매우 감소하는 것을 확인할 수 있었다.

Keywords

References

  1. Berberidou, C., Poulios, I., Xekoukoulotakis, N.P. and Mantzavinos, D. (2007) Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions, Appl. Catal. B., Vol.74, pp. 63-72. https://doi.org/10.1016/j.apcatb.2007.01.013
  2. Chin, A. and Berube, P.R. (2005) Removal of disinfection by-product precursors with ozone-UV advanced oxidation process, Wat. Res., Vol.39, pp. 2136-2144. https://doi.org/10.1016/j.watres.2005.03.021
  3. Choi, Younggyun, Kim, Dooil and Kim, Sunghong (2009) A Study on Optimal Design of UV Contactor using an Optical Radiation Model, Journal of Korean Society on Water Quality, Vol.25, No.4, pp.547-552.
  4. Chunde Wu, Xinhui Liu, Dongbin Wei, Jinchu Fan and Liansheng Wang (2001) Photosonochemical Degradation of Phenol in Water, Wat. Res., Vol.35, No.16, pp. 3927-3933. https://doi.org/10.1016/S0043-1354(01)00133-6
  5. Herrmann, J.M. (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catalysis Today, Vol.53, pp. 115-129 https://doi.org/10.1016/S0920-5861(99)00107-8
  6. Kaneco, S., Rahman, M.A., Suzuki, T., Katsumata, H. and Ohta, K.(2004) Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide, Journal of Photochemistry and Photobiology A: Chemistry, Vol.163, pp. 419-424. https://doi.org/10.1016/j.jphotochem.2004.01.012
  7. Maezawa, A., Nakadoi, H., Suzuki, K., Furusawa, T., Suzuki, Y. and Uchida, S. (2007) Treatment of dye wastewater by using photocatalytic oxidation with sonication, Ultrason. Sonochem., Vol.14, pp. 615-620. https://doi.org/10.1016/j.ultsonch.2006.11.002
  8. Muruganandham, M. and Swaminathan, M. (2006) Advanced oxidative decolourisation of Reactive Yellow 14 azo dye by $UV/TiO_{2},\;UV/H_{2}O_{2},\;UV/H_{2}O_{2}/Fe^{2+}$ Separation and Purification, Technology, Vol.48, pp. 297-303.
  9. Oguma, K., Katayama, H., Mitani, H., Morita, S., Hirata, T. and Ohgaki, S, (2001) Determination of pyrimidine Dimers in Escherichia coli and Cryptorsporidium parvum during UV light Inactivation, Photoreactivation, and Dark repair, Appl. Enivorn. Microbiol., pp. 4630-4637.
  10. Ricardo A. Torres-Palma, Jessica I. Nieto, Evelyne Combet, Christian Petrier, Cesar Pulgarin, 2010, An innovative ultrasound, $Fe^{2+}\;and\;TiO_{2}$ photoassisted process for bisphenol a mineralization, Wat. Res., Vol.44, pp. 2245-2252. https://doi.org/10.1016/j.watres.2009.12.050
  11. Riga, A., Soutsas, K., Ntampegliotis, K., Karayannis, V. and Papapolymerou, G. (2007) Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion Hexl dyes. Comparison of $H_{2}O_{2}/UV$, Fenton, UV/Fenton, $TiO_{2}/UV\;and\;TiO_{2}/UV/H_{2}O_{2}$ processes, Desalination, Vol.211, pp. 72-86. https://doi.org/10.1016/j.desal.2006.04.082
  12. Shin, G.A., Linden, K.G., Arrowood, M.J. and Sobsey, M.D. (2001) Low-pressure UV Inactivation and DNA Repair Potential of Cryptosporidium parvum Oocysts, Appl. Enivorn. Microbiol., pp. 3029-3032.
  13. Son, Younggyu, Lim, Myunghee and Khim, Jeehyeong (2009) Investigation of acoustic cavitation energy in a large-scale sonoreactor, Ultrson. Sonochem., Vol.16, pp. 552-556. https://doi.org/10.1016/j.ultsonch.2008.12.004
  14. Son, Younggyu, Lim, Myunghee, Song, JiHyeon and Khim, Jeehyeong (2009) Liquid Height Effect on Sonochemical Reactions in a 35 kHz Sonoreactor, Jpn. J. Appl. Phys., Vol.48, pp. 07GM16. https://doi.org/10.1143/JJAP.48.07GM16
  15. Wang, L., Jiang, X. and Liu, Y. (2008) Degradation of bisphenol A and formation of hydrogen peroxide induced by glow discharge plasma in aqueous solutions, J. Haz. Mat., Vol.154, pp. 1106-1114. https://doi.org/10.1016/j.jhazmat.2007.11.016
  16. Wayne, C.E. and Wayne, R.P. (1996) Photochemistry, Oxford University Press, pp. 21-22