DOI QR코드

DOI QR Code

Elimination of Low Order Harmonics in Multilevel Inverters Using Genetic Algorithm

  • Salehi, Reza (Dept. of Electrical Eng., Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Farokhnia, Naeem (Dept. of Electrical Eng., Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Abedi, Mehrdad (Dept. of Electrical Eng., Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Fathi, Seyed Hamid (Dept. of Electrical Eng., Amirkabir University of Technology (Tehran Polytechnic))
  • Received : 2010.08.22
  • Accepted : 2011.01.30
  • Published : 2011.03.20

Abstract

The selective harmonic elimination pulse width modulation (SHEPWM) switching strategy has been applied to multilevel inverters to remove low harmonics. Naturally, the related equations do not have feasible solutions for some operating points associated with the modulation index (M). However, with these infeasible points, minimizing instead of eliminating harmonics is performed. Thus, harmful harmonics such as the $5^{th}$ harmonic still remains in the output waveform. Therefore, it is proposed in this paper to ignore solving the equation associated with the highest order harmonics. A reduction in the eliminated harmonics results in an increase in the degrees of freedom. As a result, the lower order harmonics are eliminated in more operating points. A 9-level inverter is chosen as a case study. The genetic algorithm (GA) for optimization purposes is used. Simulation results verify the proposed method.

Keywords

References

  1. J. Rodriguez, J.-S. Lai, and F. Z. Peng, "Multilevel inverters: a survey of topologies, controls, and applications," IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 724-738, Aug. 2002. https://doi.org/10.1109/TIE.2002.801052
  2. C. Cecati, F. Ciancetta, P. SiaNo. "A multilevel inverter for PV systems with fuzzy logic control," IEEE Trans. Ind. Electron., Vol. 57, No. 12, pp. 4115-4125, Dec. 2010. https://doi.org/10.1109/TIE.2010.2044119
  3. N. Flourentzou, V. G. Agelidis, and G. D. Demetriades, "VSC-based HVDC power transmission systems: an overview," IEEE Trans. Power Electron., Vol. 24, No. 3, pp. 592-602, Mar. 2009. https://doi.org/10.1109/TPEL.2008.2008441
  4. K. Gopakumar, A. Das, R. Ramchand, C. Patel, and K. Gopakumar, "A hybrid multilevel inverter topology for an open-end winding induction motor drive using two-level inverters in series with a capacitor fed H-bridge cell," IEEE Trans. Ind. Electron., Vol. 57, No. 11, pp. 3707-3714, Nov. 2010. https://doi.org/10.1109/TIE.2010.2040565
  5. N. Farokhnia, S. H. Fathi, and H. R. Toodeji, "Direct nonlinear control for individual DC voltage balancing in cascaded multilevel DSTATCOM," in Proc. EPECS, pp. 1-8, Nov. 2009.
  6. D. G. Holmes and T. A. Lipo, Pulse width modulation for power converters principles and practice, NJ: Wiley-IEEE Press, Oct. 2003.
  7. N. Yousefpoor, S. H. Fathi, N. Farokhnia, and S. H. Sadegh, "Application of OHSW technique in cascaded multi-level inverter with adjustable DC sources," Proc. EPECS, pp. 1-6, Nov. 2009.
  8. W. Fei, X. Du, and B. Wu, "A generalized half-wave symmetry SHE-PWM formulation for multilevel voltage inverters," IEEE Trans. Ind. Electron., Vol. 57, No. 9, pp. 3030-3038, Sep. 2009.
  9. A. K. Kaviani, S. H. Fathi, N. Farokhnia, and A. J. Ardakani, "PSO, an effective tool for harmonics elimination and optimization in multi-level inverters," in Proc. ICIEA, pp. 2902-2907, May 2009.
  10. S. Sirisukprasert, J.-S. Lai, and T.-H. Liu, "Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters," IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 875-881, Aug. 2002. https://doi.org/10.1109/TIE.2002.801226
  11. J. Chiasson, L. Tolbert, K. McKenzie, and Z. Du, "Eliminating harmonics in a multi-level converter using the resultant theory of symmetric polynomials and resultants," IEEE Trans. Control Syst. Technol., Vol. 13, No. 2, pp. 216-223, Mar. 2005. https://doi.org/10.1109/TCST.2004.839556
  12. K. El-Naggar and T. H. Abdelhamid, "Selective harmonic elimination of new family of multilevel inverters using genetic algorithms," Energy Conversion and Management, Vol. 49, No. 1, pp.89-95, Jan. 2008. https://doi.org/10.1016/j.enconman.2007.05.014
  13. J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, and S. Kouro, "Multi-level voltage-source-converter topologies for industrial medium-voltage drives," IEEE Trans. Ind. Electron., Vol. 54, No. 6, pp. 2930-2945, Dec. 2007.
  14. S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B. Wu, J. Rodriguez, M. A. Perez, and J. I. Leon, "Recent advances and industrial applications of multilevel converters," IEEE Trans. on Ind. Electron., Vol. 57, No. 8, pp. 2553-2580, Aug. 2010. https://doi.org/10.1109/TIE.2010.2049719
  15. M. Malinowski, K. Gopakumar, J. Rodriquez, and M. A. Perez, "A survey on cascaded multilevel inverters," IEEE Trans. Ind. Electron., Vol. 57, No. 7, pp. 2197-2206, Jul. 2009.
  16. N. Farokhnia, S. H. Fathi, H. Vadizadeh, and H. Toodeji; "Comparison between approximate and accurate calculation of line voltage THD in multilevel inverters with unequal DC sources," in Proc. ICIEA, pp. 1034-1039, Jun. 2010.
  17. N. Yousefpoor, N. Farokhnia, S. H. Fathi, J. S. Moghani, "Developed single-phase OMTHD technique for cascaded multi-level inverter By considering adjustable DC sources," in Proc. EPECS, pp. 1-6, Nov. 2009.
  18. N. Yousefpoor, S. H. Fathi, N. Farokhnia, and H. A. Abyaneh, "Application of OMTHD on the line voltage of cascaded multi-level inverters with adjustable DC sources," in Proc. ICIEA, pp. 498-503, Jun. 2010.
  19. M. G. Hosseini Aghdam, S. H. Fathi, and G. B. Gharehpetian, "Comparison of OMTHD and OHSW harmonic optimization techniques in multi-level voltage-source inverter with non-equal DC Sources," in Proc. ICPE, pp. 587-591, Oct. 2007.
  20. L.. Davis, The Handbook of Genetic Algorithms, New York, 1991.
  21. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, 1989
  22. J. H. Holland, Adaptation in natural and artificial systems, The University of Michigan Press Ann Arbor, 1975
  23. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Wiley, 2001.
  24. A. Homaifar, C. X. Gi, and S. H. Lai, "Constrained optimization via genetic algorithms," Simulation, Vol. 62, No. 4, pp. 242-254, 1994. https://doi.org/10.1177/003754979406200405
  25. Z. Michalewicz and M. Schoenauer, "Evolutionary algorithms for constrained parameter optimization problems" Evolutionary Computation Journal, Vol. 4, No. 1, pp. 1-32, 1996. https://doi.org/10.1162/evco.1996.4.1.1
  26. H. Min, C. S. Ko, and H. J. Ko, "The spatial and temporal consolidation of returned products in a closed-loop supply chain network," Computers & Industrial Engineering, Vol. 51, No. 2, pp. 309-320, Oct. 2006. https://doi.org/10.1016/j.cie.2006.02.010
  27. J. Rezaei and M. Davoodi, "A deterministic, multi-item inventory model with supplier selection and imperfect quality," Applied Mathematical Modeling, Vol. 32, pp. 2106-2116, 2008. https://doi.org/10.1016/j.apm.2007.07.009

Cited by

  1. Wavelet PWM Technique for Single-Phase Three-Level Inverters vol.15, pp.6, 2015, https://doi.org/10.6113/JPE.2015.15.6.1517
  2. Application of the Bee Algorithm for Selective Harmonic Elimination Strategy in Multilevel Inverters vol.27, pp.4, 2012, https://doi.org/10.1109/TPEL.2011.2166124
  3. Harmonic analysis and FPGA implementation of SHE controlled three phase CHB 11-level inverter in MV drives using deterministic and stochastic optimization techniques vol.2, pp.1, 2013, https://doi.org/10.1186/2193-1801-2-370
  4. Experimental Validation of a Cascaded Single Phase H-Bridge Inverter with a Simplified Switching Algorithm vol.14, pp.3, 2014, https://doi.org/10.6113/JPE.2014.14.3.507
  5. Selective harmonic elimination strategy for cascaded H-bridge five-level inverter with arbitrary power sharing among the cells vol.9, pp.1, 2016, https://doi.org/10.1049/iet-pel.2014.0966
  6. An Improved Wavelet PWM Technique with Output Voltage Amplitude Control for Single-phase Inverters vol.16, pp.4, 2016, https://doi.org/10.6113/JPE.2016.16.4.1407
  7. Digital Implementation of Selective Harmonic Elimination Techniques in Modular Current Source Rectifiers vol.9, pp.2, 2013, https://doi.org/10.1109/TII.2012.2210232
  8. A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems vol.62, pp.4, 2015, https://doi.org/10.1109/TIE.2014.2361486
  9. Analytical Method for Pattern Generation in Five-Level Cascaded H-Bridge Inverter Using Selective Harmonic Elimination vol.61, pp.11, 2014, https://doi.org/10.1109/TIE.2014.2308163
  10. Optimal Switching Pattern for PWM AC-AC Converters Using Bee Colony Optimization vol.14, pp.2, 2014, https://doi.org/10.6113/JPE.2014.14.2.362
  11. Application of soft computing methods for grid connected PV system: A technological and status review vol.75, 2017, https://doi.org/10.1016/j.rser.2016.11.210
  12. Converter Utilization Ratio Enhancement in the THD Optimization of Cascaded H-Bridge 7-level Inverters vol.16, pp.1, 2016, https://doi.org/10.6113/JPE.2016.16.1.173
  13. Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review 2017, https://doi.org/10.1016/j.rser.2017.08.068
  14. Harmonic elimination of cascaded H-bridge multilevel inverter based active power filter controlled by intelligent techniques vol.61, 2014, https://doi.org/10.1016/j.ijepes.2014.02.023
  15. Comparative Analysis of NR and TBLO Algorithms in Control of Cascaded MLI at Low Switching Frequency vol.85, 2016, https://doi.org/10.1016/j.procs.2016.05.290
  16. Metaheuristic Optimization Methods Applied to Power Converters: A Review vol.30, pp.12, 2015, https://doi.org/10.1109/TPEL.2015.2397311
  17. Selective elimination of harmonic contents in an uninterruptible power supply: an enhanced adaptive hybrid technique vol.5, pp.8, 2012, https://doi.org/10.1049/iet-pel.2011.0472
  18. Influence of crossover methods used by genetic algorithm-based heuristic to solve the selective harmonic equations (SHE) in multi-level voltage source inverter vol.40, pp.8, 2015, https://doi.org/10.1007/s12046-015-0422-2
  19. Control of a Uniform Step Asymmetrical 13-Level Inverter Using Particle Swarm Optimization vol.55, pp.1, 2014, https://doi.org/10.7305/automatika.2014.01.117
  20. An Effective Technique for Reducing Total Harmonics Distortion of Multilevel Inverter vol.27, pp.3, 2018, https://doi.org/10.1515/jisys-2016-0210
  21. Comparative study between different optimisation techniques for finding precise switching angle for SHE-PWM of three-phase seven-level cascaded H-bridge inverter vol.11, pp.3, 2018, https://doi.org/10.1049/iet-pel.2017.0530