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Abstract 

The study of bacterial flagellar swimming motion remains an interesting and challenging research subject in the 
fields of hydrodynamics and bio-locomotion. This swimming motion is characterized by very low Reynolds numbers, 
which is unique and time reversible.  In particular, the effect of rotation of helical flagella of bacterium on swimming 
motion requires detailed multi-disciplinary analysis. Clear understanding of such swimming motion will not only be 
beneficial for biologists but also to engineers interested in developing nanorobots mimicking bacterial swimming. In this 
paper, computational fluid dynamics (CFD) simulation of a three dimensional single flagellated bacteria has been 
developed and the fluid flow around the flagellum is investigated. CFD-based modeling studies were conducted to find 
the variables that affect the forward thrust experienced by the swimming bacterium.  It is found that the propulsive 
force increases with increase in rotational velocity of flagellum and viscosity of surrounding fluid. It is also deduced 
from the study that the forward force depends on the geometry of helical flagella (directly proportional to square of the 
helical radius and inversely proportional to pitch). 
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1. Introduction 
The Computational Fluid Dynamics (CFD) has been used in various areas of biology and sports science to investigate swimming 

mechanisms. A detailed analysis using CFD methods enabled us to understand the drag and propulsion generated during swimming of 
dolphin [1]. The use of CFD in nano-scale domain is also becoming increasingly popular. Miniature or nano-scale swimming robots are 
beneficial for screening and treatment of many diseases. They are biologically inspired and designed based on bacterial motion. 
Studying bacterial swimming motion using experiments involves lots of practical difficulties, CFD methodologies –which offer 
alternative ways to experiments, will help us to understand fluid dynamics of swimming motion.  

Many prokaryotic bacteria like Escherichia Coli during chemotaxis, swim towards or away from certain chemicals using their 
flagella [2]. It has been proved experimentally that it is flagellar rotation that causes swimming motion [3]. Each flagellum extends 
from the cell body and is rotated by reversible flagellar motor situated at the base. The rotational speed of the motor ranges from 15 – 
300 Hz during swimming and the swimming speed of the bacteria is 10-35μm/s. Flagellum grows like an appendage up to 10-15 μm in 
length and through its atomic structure study, it has been proved that there are 11 protofilaments (protein monomers) whose structural 
change causes change in flagellar handedness, amplitude and pitch [4]. 

The hydrodynamic force produced is characterized by fluid’s viscosity; low Reynolds number flow and diffusion (see our recent 
review on the physics of flagellar motion for more details [5]).  

There are two modes of motion available during swimming they are ‘run’ and ‘tumble’. During run mode flagellar motor rotates 
clockwise (as viewed from outside the cell) and the left-handed helical filaments bundle together. As flagellum is left-handed helical, 
clockwise rotation produces a force on the cell body. During tumble, due to a complex process, left-handed helix is transformed into 
right-handed helix. The tumble is due to flagellar counter- clockwise rotation and pauses. In this paper we analyze the flow and model 
the ‘run’ mode of bacterial motion using commercial CFD software SolidWorks © 2010 Flow Simulation. 
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2. Mathematical modeling of low Reynolds number flow 
The Reynolds number is defined as the ratio of inertial force and viscous force. In the case of helix of pitch  λ rotating with 

the speed  ω, in fluid with dynamic viscosity μ , the Reynold’s number is given by [6] 
 

                       
2

eR ωλ ρ
μ

=                                                                               (1) 

If we substitute the typical values for E. coli, we will get Re = 10-05. This very low value indicates that swimming motion of this 
type has no inertia, no coasting and time-reversible thus unique.  

In such a case of low Reynolds number domain, the flow is often called Stokes or creeping flow.  The stokes equation and 
equation of continuity becomes 

                              2 0u pμ∇ −∇ =                                                                           (2) 

                            0u∇ =                                                                                     (3) 

Note that the eqn. (3) is due to restrictive conditions of continuity.  In order to solve these equation visualize flow fields and 
modeling with various configurations, we have used SolidWorks 2010 Flow Simulation – a commercial CFD software which has 
built in 3D modeling module for preprocessing and flow simulation add-in with capabilities of post processing. 

3. The Flow Simulation CFD methodology 
The incompressible, unsteady Navier-Stokes equations are given by  
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with the equation of continuity, 
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where  x, y and z are the axes of the orthogonal coordinate system. u, v and w are the fluid velocity vectors in each direction 
respectively.  p is the pressure and ρ is the fluid density. These equations are to be solved in a given computational domain in 
each mesh cell [7]. 

 

3.1 Rotating regions 
The local rotating regions is an option employed for calculating transient or steady state flows in regions around rotating solid 

parts. This rotating region has its own rotating coordinate system. The Navier-Stokes equation is solved in stationary regions of 
the computational domain in the inertial Cartesian coordinate system. The influence of the rotational effect on the flow is taken 
into account in the equations written in each of the rotating coordinates.  

The solution obtained within the rotating regions and non-rotating regions of the computational domain are connected using 
special internal boundary conditions at the fluid boundaries of the rotating regions. This is done by slicing the rotating regions into 
rings of equal width. The values of flow parameters are taken as boundary conditions from the neighboring regions and averaged 
circumferentially over each of these rings. An iterative procedure is used to solve the problem by adjusting the solutions in the 
rotating and non-rotating regions with the relaxations.  

3.2 Computational mesh 
The flow simulation uses a rectangular computational domain. This is automatically constructed so that it encloses the solid 

body and associated boundary planes. The flow simulation consists of three steps in mesh building. First is a basic mesh building 
in which the computational domain is sliced by the basic mesh planes. This is independent of solid-fluid interface. The second 
step is to splitting cells along the solid-fluid interface. These child cells are then refined according to the solid-fluid curvature. As 
a result of such meshing procedures, a locally refined computational mesh is obtained and used for solving the conservation 
equations on it. 
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3.3 Numerical solutions technique 
The Flow Simulation uses finite volume (FV) approach to solve the governing equations. This involves a rectangular 

computational mesh designed in Cartesian coordinate system with the locally refinement of the mesh at the solid-fluid interface. 
The values of the physical variables are stored at the centers of the mesh cell. The governing equations are discretized, the spatial 
derivatives are approximated with implicit second-order accuracy and the time derivatives are approximated with an implicit first-
order Euler scheme.  Flow Simulation uses double-preconditioned iterative procedure based on multigrid method to solve 
equations [8]. 

4. Methods and materials 
4.1 Three dimensional model 

The aim of CFD analysis is to visualize the flow field generated by the helical flagella and to conduct model studies to 
investigate the factors affecting the swimming motion. A typical bacterium like E. coli consists of a cell body and flagellum. 
During ‘run’ modes, the flagellum becomes rigid helix.  

 
 
 

 
Fig. 1 the helical flagellum with a cell body 

 
 
 
The flagellar filament is modeled as a helix with solid tube of thickness 2r and of helical radius ‘R’, pitch ‘λ’ and length ‘L’. 

Helices with various configurations were also built for modeling studies.  All helices were having short pitch angles, i.e. 
2 /Rθ π λ≈  was very small.  

 
 
 

 
 

Fig. 2 The flagellum. Modeled as helical tube with radius r = 1mm with configurations,                        
R= 12.7, 17.7, 22.7 and 27.7mm. Pitch length with λ = 66, 76, 86, 96 and 106 mm. 

 
 
 

Though the Fig. 2 dimensions of the models were chosen in macro-scale for better visualization of flows, fluid viscosity and 
density are kept high such that the Reynolds number becomes ≈ 10-05. 

 

4.2 Meshing  
Based on the geometry and boundaries of the model, computational domain was automatically created by Flow Simulation. 

The mesh is created using ‘solid-fluid interface curvature’ constraint. Due to this a locally refined meshing can be seen along the 
walls of flagellum (inset of Figure 3). Table 1 shows the number of cells in mesh for the configuration R=22.7 mm and λ =66mm. 
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Fig. 3 Three dimensional model of helix in computational mesh. Inset: cross-section of finer refined mesh along the helix 

 

Table 1 Number of cells in mesh 

Parameter Value 

Total cells 24746 

Fluid cells 15426 

Solid cells 413 

Partial cells 8907 

Irregular cells 0 

Trimmed cells 76 
 

4.3 Prescribed rotational motion and measurement of goals 
A cylindrical fluid volume around flagella is chosen as rotating region. And a rotational velocity was prescribed along Y-axis. 

The coupled motion produced due to this rotation was observed in the CFD studies.  

 
Fig. 4 Local rotating fluid region around helix 

Flow simulation has a built in option to measure various physical quantities during the study. They can be obtained through 
setting ‘goals’ during preprocessing. They include global, volume, surface or point goal associated with the selected parts. Mainly 
forward thrust force (experienced by the helical surface), velocity (produced on fluid volume enclosed) and pressure were 
measured. 
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5. Results and Discussion 
Many theories, including slender body theory and resistive-force theory suggest that the parameters that influence swimming 

include: rotational speed of flagella, viscosity of the fluid and helical geometry [5]. The CFD studies were conducted by varying 
one of these parameters by keeping rest of them constant. 

The flow pattern for the configuration helical radius 22.7 mm and rotational velocity 1.57 rad/s, with fluid viscosity 100 Pa S 
is obtained. Contour graphs depicting velocity and pressure in XY plane is seen through a cut plot. The visualization of flow fields 
and contours show a forward movement as expected in the case of low Reynolds number domain. The effect of rotational motion 
of the helix is seen and high pressure zones are visible at the rear sides of the flagellum 

 

 

Fig. 5  Contour plots of velocity and pressure for the configuration helical radius 22.7 mm and rotational velocity 1.57 rad/s         
(a) velocity vector plot shows the fact that there is a coupled translational motion along Y-axis.                     

(b) Pressure plot shows the pressure drops at rear side of the helix shows translational motion of the flagellum along +Y-axis. 
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Fig. 6 Y-Component velocity at various rotational speeds. The helical flagella is rotated with configuration                

R= 12.7 mm and λ = 66 mm is rotated at the speeds                                       
(a) 1.57 rad/s; (b) 2.20rad/s ; (c) 2.83 rad/s; (d) 3.46 rad/s; (e) 4.08rad/s;  and (f) 4.71rad/s. The Y-component velocity is high 

after the flow is developed and in –Y direction. 
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The velocity contour plot clearly indicates the effect of rotational speed in axial motion. On increasing rotational speed, the 

forward velocity of the flagellum increases. The axial thrust in each case also was measured through surface goal option and 
shows a linear relation as expected (Figure 7 b).  

The next study has been conducted by varying only helical radius. At a constant rotational speed of 1.57 rad/s, the helical 
radius was changed to 12.7, 17.7, 22.7 and 27.7 mm. The propulsive force was measured in each case. It is found that the force is 
directly proportional to the square of the radius of the helical filament (Figure 7 a). Simulations were also continued for various 
rotational speeds of helical flagella. This time helical radius was fixed constant at  25.4 mm and 35.4 mm. This study illustrated 
that on increasing the rotational velocity, the propulsive force also increases. The slope of this graph shows the value of coupling 
coefficient transforming rotational velocity with the propulsive force produced (Figure 7 b).  

The next study involved the simulations with various values of pitch of the helix 77, 88, 99, 110, 121 mm. The rotational speed 
was fixed at 1.57rad/s and radius of helix used was 12.7 mm. It was found from the data that, on increasing the pitch of the helix, 
the propulsive force is decreasing (Figure 7 c). In order to understand the effect of viscosity in the propulsive force, at a pitch of 
66 mm and rotational speed of 1.57 rad/s, viscocity  is varied between 100 to 125 with the units of 5. The result indicates that on 
increasing the viscosity the axial force increases linearly (Figure 7d). 

 

 

Fig. 7 Results of the studies to investigate the dependencies of propulsive force.  

(a). Influence of the helical radius on axial thrust. Graph between propulsive force and the square of the radius               
which indicates the fact that 2F R∝ .  

(b). Effect of rotational speed and helical radius on propulsive force.  

(c)  Influence of helical pitch on propulsive force showing inverse proportion. This fact biologically signify                
that bacteria with shortly pitched flagella  can be effective during chemotaxis.  

(d) Influence of viscosity of surrounding fluid on propulsive force. Unlike the high Reynolds number domain,               
increasing viscosity increases propulsive force. 

 

5.1 Validation 
In order to validate these CFD studies, we can use Buckingham-π theorem. This theorem applies dimensional analysis to 

compare model to a prototype. According to this theorem, the ratio of  2/F Lμω  should be same for simulated one and real 
one [9]. Taking the typical values of a bacterium (E. coli) the values of length, viscosity and rotational velocity are 10μm, 0.001 
Pa.S, 314 rad/s respectively. Taking the case of simulation where L= 20cm, η =100 Pa.S, ω = 1.57 rad/s, the propulsive force 
computed was F =0.4172N. The actual force is calculated using Buckingham-π theorem found to be in the range of 10-12 N which 
is in agreement with the reported propulsive force measurements due to single helical flagella using direct experiment methods 
[10]. 
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6. Conclusions & Future work 
It is difficult to conduct experiments in the laboratory with the parameters of the helical flagellum changed. These CFD 

modeling studies enabled us to vary the dependencies and measure the parameters with the help of Flow Simulation software.  
The results of the simulation, which is in accordance with the experimental results, illustrated the following facts: 
i) On increasing the rotational speed, the axial thrust developed increases.  

ii) The axial thrust is also found to be directly proportional to the square of the radius of the helix. 

iii) On increasing the pitch of the helix, the axial force developed decreases.  

iv) The helical thrust developed increases on increasing the viscosity of the surrounding fluid.  

By taking these findings into account one can design effectively swimming nanorobots. In order to balance the torque 
produced on flagella, the body of the bacterium slowly rotate in opposite direction. Taking this into account and studying fluid 
dynamics may throw more light on this motion. The flexibility of flagellum also may play an important role in motion. Therefore 
including this in future studies will help us to understand more about this unique swimming mechanism. 
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